175 research outputs found
A Stochastic Liouville Equation Approach for the Effect of Noise in Quantum Computations
We propose a model based on a generalized effective Hamiltonian for studying
the effect of noise in quantum computations. The system-environment
interactions are taken into account by including stochastic fluctuating terms
in the system Hamiltonian. Treating these fluctuations as Gaussian Markov
processes with zero mean and delta function correlation times, we derive an
exact equation of motion describing the dissipative dynamics for a system of n
qubits. We then apply this model to study the effect of noise on the quantum
teleportation and a generic quantum controlled-NOT (CNOT) gate. For the quantum
CNOT gate, we study the effect of noise on a set of one- and two-qubit quantum
gates, and show that the results can be assembled together to investigate the
quality of a quantum CNOT gate operation. We compute the averaged gate fidelity
and gate purity for the quantum CNOT gate, and investigate phase, bit-flip, and
flip-flop errors during the CNOT gate operation. The effects of direct
inter-qubit coupling and fluctuations on the control fields are also studied.
We discuss the limitations and possible extensions of this model. In sum, we
demonstrate a simple model that enables us to investigate the effect of noise
in arbitrary quantum circuits under realistic device conditions.Comment: 36 pages, 6 figures; to be submitted to Phys. Rev.
Can discrete time make continuous space look discrete?
Van Bendegem has recently offered an argument to the effect that, if time is discrete, then there should exist a correspondence between the motions of massive bodies and a discrete geometry. On this basis, he concludes that, even if space is continuous, it should nonetheless appear discrete. This paper examines the two possible ways of making sense of that correspondence, and shows that in neither case van Bendegem's conclusion logically follows
Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution
The larger number of models of asteroid shapes and their rotational states
derived by the lightcurve inversion give us better insight into both the nature
of individual objects and the whole asteroid population. With a larger
statistical sample we can study the physical properties of asteroid
populations, such as main-belt asteroids or individual asteroid families, in
more detail. Shape models can also be used in combination with other types of
observational data (IR, adaptive optics images, stellar occultations), e.g., to
determine sizes and thermal properties. We use all available photometric data
of asteroids to derive their physical models by the lightcurve inversion method
and compare the observed pole latitude distributions of all asteroids with
known convex shape models with the simulated pole latitude distributions. We
used classical dense photometric lightcurves from several sources and
sparse-in-time photometry from the U.S. Naval Observatory in Flagstaff,
Catalina Sky Survey, and La Palma surveys (IAU codes 689, 703, 950) in the
lightcurve inversion method to determine asteroid convex models and their
rotational states. We also extended a simple dynamical model for the spin
evolution of asteroids used in our previous paper. We present 119 new asteroid
models derived from combined dense and sparse-in-time photometry. We discuss
the reliability of asteroid shape models derived only from Catalina Sky Survey
data (IAU code 703) and present 20 such models. By using different values for a
scaling parameter cYORP (corresponds to the magnitude of the YORP momentum) in
the dynamical model for the spin evolution and by comparing synthetics and
observed pole-latitude distributions, we were able to constrain the typical
values of the cYORP parameter as between 0.05 and 0.6.Comment: Accepted for publication in A&A, January 15, 201
Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence
The cycling of carbon (C) between the Earth surface and
the atmosphere is controlled by biological and abiotic processes that
regulate C storage in biogeochemical compartments and release to the
atmosphere. This partitioning is quantified using various forms of C-use
efficiency (CUE) – the ratio of C remaining in a system to C entering that
system. Biological CUE is the fraction of C taken up allocated to
biosynthesis. In soils and sediments, C storage depends also on abiotic processes, so the term C-storage
efficiency (CSE) can be used. Here we first review and reconcile CUE and CSE
definitions proposed for autotrophic and heterotrophic organisms and
communities, food webs, whole ecosystems and watersheds, and soils and
sediments using a common mathematical framework. Second, we identify general
CUE patterns; for example, the actual CUE increases with improving growth
conditions, and apparent CUE decreases with increasing turnover. We then
synthesize > 5000 CUE estimates showing that CUE decreases with
increasing biological and ecological organization – from unicellular to
multicellular organisms and from individuals to ecosystems. We conclude that
CUE is an emergent property of coupled biological–abiotic systems, and it
should be regarded as a flexible and scale-dependent index of the capacity of
a given system to effectively retain C.</p
Uncovering Dangerous Cheats: How Do Avian Hosts Recognize Adult Brood Parasites?
BACKGROUND: Co-evolutionary struggles between dangerous enemies (e.g., brood parasites) and their victims (hosts) lead to the emergence of sophisticated adaptations and counter-adaptations. Salient host tricks to reduce parasitism costs include, as front line defence, adult enemy discrimination. In contrast to the well studied egg stage, investigations addressing the specific cues for adult enemy recognition are rare. Previous studies have suggested barred underparts and yellow eyes may provide cues for the recognition of cuckoos Cuculus canorus by their hosts; however, no study to date has examined the role of the two cues simultaneously under a consistent experimental paradigm. METHODOLOGY/PRINCIPAL FINDINGS: We modify and extend previous work using a novel experimental approach--custom-made dummies with various combinations of hypothesized recognition cues. The salient recognition cue turned out to be the yellow eye. Barred underparts, the only trait examined previously, had a statistically significant but small effect on host aggression highlighting the importance of effect size vs. statistical significance. CONCLUSION: Relative importance of eye vs. underpart phenotypes may reflect ecological context of host-parasite interaction: yellow eyes are conspicuous from the typical direction of host arrival (from above), whereas barred underparts are poorly visible (being visually blocked by the upper part of the cuckoo's body). This visual constraint may reduce usefulness of barred underparts as a reliable recognition cue under a typical situation near host nests. We propose a novel hypothesis that recognition cues for enemy detection can vary in a context-dependent manner (e.g., depending on whether the enemy is approached from below or from above). Further we suggest a particular cue can trigger fear reactions (escape) in some hosts/populations whereas the same cue can trigger aggression (attack) in other hosts/populations depending on presence/absence of dangerous enemies that are phenotypically similar to brood parasites and costs and benefits associated with particular host responses
Second Generation Steroidal 4-Aminoquinolines Are Potent, Dual-Target Inhibitors of the Botulinum Neurotoxin Serotype A Metalloprotease and P. falciparum Malaria
Significantly more potent second generation 4-amino-7-chloroquinoline (4,7-ACQ) based inhibitors of the botulinum neurotoxin serotype A (BoNT/A) light chain were synthesized. Introducing an amino group at the C(3) position of the cholate component markedly increased potency (IC50 values for such derivatives ranged from 0.81 to 2.27 mu M). Two additional subclasses were prepared: bis(steroidal)-4,7-ACQ derivatives and bis(4,7-ACQ)cholate derivatives; both classes provided inhibitors with nanomolar-range potencies (e.g., the K-i of compound 67 is 0.10 mu M). During BoNT/A challenge using primary neurons, select derivatives protected SNAP-25 by up to 89%. Docking simulations were performed to rationalize the compounds' in vitro potencies. In addition to specific residue contacts, coordination of the enzyme's catalytic zinc and expulsion of the enzyme's catalytic water were a consistent theme. With respect to antimalarial activity, the compounds provided better IC90 activities against chloroquine resistant (CQR) malaria than CQ, and seven compounds were more active than mefloquine against CQR strain W2
Friction forces position the neural anlage
During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo
- …