914 research outputs found

    X- and gamma-ray studies of HESS J1731-347 coincident with a newly discovered SNR

    Full text link
    In the survey of the Galactic plane conducted with H.E.S.S., many VHE gamma-ray sources were discovered for which no clear counterpart at other wavelengths could be identified. HESS J1731-347 initially belonged to this source class. Recently however, the new shell-type supernova remnant (SNR) G353.6-0.7 was discovered in radio data, positionally coinciding with the VHE source. We will present new X-ray observations that cover a fraction of the VHE source, revealing nonthermal emission that most likely can be interpreted as synchrotron emission from high-energy electrons. This, along with a larger H.E.S.S. data set which comprises more than twice the observation time used in the discovery paper, allows us to test whether the VHE source may indeed be attributed to shell-type emission from that new SNR. If true, this would make HESS J1731-347 a new object in the small but growing class of non-thermal shell-type supernova remnants with VHE emission.Comment: 4 pages, 5 figures, to appear in proceedings of the 31st ICRC, Lodz, Polan

    The H.E.S.S. multi-messenger program

    Full text link
    Based on fundamental particle physics processes like the production and subsequent decay of pions in interactions of high-energy particles, close connections exist between the acceleration sites of high-energy cosmic rays and the emission of high-energy gamma rays and high-energy neutrinos. In most cases these connections provide both spatial and temporal correlations of the different emitted particles. The combination of the complementary information provided by these messengers allows to lift ambiguities in the interpretation of the data and enables novel and highly sensitive analyses. In this contribution the H.E.S.S. multi-messenger program is introduced and described. The current core of this newly installed program is the combination of high-energy neutrinos and high-energy gamma rays. The search for gamma-ray emission following gravitational wave triggers is also discussed. Furthermore, the existing program for following triggers in the electromagnetic regime was extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An overview over current and planned analyses is given and recent results are presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    The H.E.S.S. II GRB Program

    Full text link
    Gamma-ray bursts (GRBs) are some of the most energetic and exotic events in the Universe, however their behaviour at the highest energies (>10 GeV) is largely unknown. Although the Fermi-LAT space telescope has detected several GRBs in this energy range, it is limited by the relatively small collection area of the instrument. The H.E.S.S. experiment has now entered its second phase by adding a fifth telescope of 600 m2^{2} mirror area to the centre of the array. This new telescope increases the energy range of the array, allowing it to probe the sub-100 GeV range while maintaining the large collection area of ground based gamma-ray observatories, essential to probing short-term variability at these energies. We will present a description of the GRB observation scheme used by the H.E.S.S. experiment, summarising the behaviour and performance of the rapid GRB repointing system, the conditions under which potential GRB repointings are made and the data analysis scheme used for these observations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    IGR J11014-6103: a newly discovered pulsar wind nebula?

    Full text link
    Context: IGRJ11014-6103 is one of the still unidentified hard X-ray INTEGRAL sources, reported for the first time in the 4th IBIS/ISGRI catalog. Aims: We investigated the nature of IGR J11014-6103 by carrying out a multiwavelength analysis of the available archival observations performed in the direction of the source. Methods: We present first the results of the timing and spectral analysis of all the X-ray observations of IGR J11014-6103 carried out with ROSAT, ASCA, Einstein, Swift, and XMM-Newton, and then use them to search for possible counterparts to the source in the optical, infra-red, radio and gamma-ray domain. Results: Our analysis revealed that IGR J11014-6103 is comprised of three different X-ray emitting regions: a point-like source, an extended object and a cometary-like "tail" (~4 arcmin). A possible radio counterpart positionally coincident with the source was also identified. Conclusions: Based on these results, we suggest that the emission from IGR J11014-6103 is generated by a pulsar wind nebula produced by a high-velocity pulsar. IGR J11014-6103 might be the first of these systems detected with INTEGRAL IBIS/ISGRI.Comment: A&A accepted, 8 pages, 8 figures, 2 table

    H.E.S.S. observations of PSR B1259-63 during its 2014 periastron passage

    Get PDF
    An extended observation campaign of the gamma-ray binary system PSR B1259-63 has been conducted with the H.E.S.S. (High Energy Stereoscopic System) II 5-telescope array during the system's periastron passage in 2014. We report on the outcome of this campaign, which consists of more than 85 h of data covering both pre- and post-periastron orbital phases. The lower energy threshold of the H.E.S.S. II array allows very-high-energy (VHE; E100E \gtrsim 100 GeV) gamma-ray emission from PSR B1259-63 to be studied for the first time down to 200 GeV. The new dataset partly overlaps with and extends in phase previous H.E.S.S. campaigns on this source in 2004, 2007 and 2011, allowing for a detailed long-term characterisation of the flux level at VHEs. In addition, the 2014 campaign reported here includes VHE observations during the exact periastron time, tpert_{\rm per}, as well as data taken simultaneously to the gamma-ray flare detected with the Fermi-LAT. Our results will be discussed in a multiwavelength context, thanks to the dense broad-band monitoring campaign conducted on the system during this last periastron passage.Comment: 8 pages, 5 figures. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland
    corecore