11 research outputs found

    Matter X waves

    Full text link
    We predict that an ultra-cold Bose gas in an optical lattice can give rise to a new form of condensation, namely matter X waves. These are non-spreading 3D wave-packets which reflect the symmetry of the Laplacian with a negative effective mass along the lattice direction, and are allowed to exist in the absence of any trapping potential even in the limit of non-interacting atoms. This result has also strong implications for optical propagation in periodic structuresComment: 5 pages, 2 figure

    Tunneling mediated by conical waves in a 1D lattice

    Full text link
    The nonlinear propagation of 3D wave-packets in a 1D Bragg-induced band-gap system, shows that tranverse effects (free space diffraction) affect the interplay of periodicity and nonlinearity, leading to the spontaneous formation of fast and slow conical localized waves. Such excitation corresponds to enhanced nonlinear transmission (tunneling) in the gap, with peculiar features which differ on the two edges of the band-gap, as dictated by the full dispersion relationship of the localized waves.Comment: 5 pages, 6 figure

    Momentum state engineering and control in Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the use of genetic learning algorithms to coherently control the dynamics of a Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy. We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A, incl. small modifications, some references adde

    Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability

    Full text link
    We show that the phenomenon of modulational instability in arrays of Bose-Einstein condensates confined to optical lattices gives rise to coherent spatial structures of localized excitations. These excitations represent thin disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with condensed atoms of much greater density compared to surrounding array sites. Aspects of the developed pattern depend on the initial distribution function of the condensate over the optical lattice, corresponding to particular points of the Brillouin zone. The long-time behavior of the spatial structures emerging due to modulational instability is characterized by the periodic recurrence to the initial low-density state in a finite optical lattice. We propose a simple way to retain the localized spatial structures with high atomic concentration, which may be of interest for applications. Theoretical model, based on the multiple scale expansion, describes the basic features of the phenomenon. Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure

    Magnetism in a lattice of spinor Bose condensates

    Full text link
    We study the ground state magnetic properties of ferromagnetic spinor Bose-Einstein condensates confined in a deep optical lattices. In the Mott insulator regime, the ``mini-condensates'' at each lattice site behave as mesoscopic spin magnets that can interact with neighboring sites through both the static magnetic dipolar interaction and the light-induced dipolar interaction. We show that such an array of spin magnets can undergo a ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar interaction depending on the dimension of the confining optical lattice. The ground-state spin configurations and related magnetic properties are investigated in detail

    Nonlinear atom optics and bright gap soliton generation in finite optical lattices

    Full text link
    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture for the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due the atom-atom interaction are discussed in detail, such as atom optical limiting and atom optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A new scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded in a controlled way starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

    Input-output theory for fermions in an atom cavity

    Full text link
    We generalize the quantum optical input-output theory developed for optical cavities to ultracold fermionic atoms confined in a trapping potential, which forms an "atom cavity". In order to account for the Pauli exclusion principle, quantum Langevin equations for all cavity modes are derived. The dissipative part of these multi-mode Langevin equations includes a coupling between cavity modes. We also derive a set of boundary conditions for the Fermi field that relate the output fields to the input fields and the field radiated by the cavity. Starting from a constant uniform current of fermions incident on one side of the cavity, we use the boundary conditions to calculate the occupation numbers and current density for the fermions that are reflected and transmitted by the cavity

    Magneto-optical control of bright atomic solitons

    No full text
    corecore