3 research outputs found

    Tree species richness differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species

    Get PDF
    Plants produce thousands of compounds, collectively called the metabolome, which mediate interactions with other organisms. The metabolome of an individual plant may change according to the number and nature of these interactions. We tested the hypothesis that tree diversity level affects the metabolome of four subtropical tree species in a biodiversity–ecosystem functioning experiment, BEF‐China. We postulated that the chemical diversity of leaves, roots and root exudates increases with tree diversity. We expected that the strength of this diversity effect differs among leaf, root and root exudates samples. Considering their role in plant competition, we expected to find the strongest effects in root exudates. Roots, root exudates and leaves of four tree species ( Cinnamomum camphora , Cyclobalanopsis glauca , Daphniphyllum oldhamii and Schima superba ) were sampled from selected plots in BEF‐China. The exudate metabolomes were normalized over their non‐purgeable organic carbon level. Multivariate analyses were applied to identify the effect of both neighbouring (local) trees and plot diversity on tree metabolomes. The species‐ and sample‐specific metabolites were assigned to major compound classes using the ClassyFire tool, whereas potential metabolites related to diversity effects were annotated manually. Individual tree species showed distinct leaf, root and root exudate metabolomes. The main compound class in leaves was the flavonoids, whereas carboxylic acids, prenol lipids and specific alkaloids were most prominent in root exudates and roots. Overall, plot diversity had a stronger effect on metabolome profiles than the local diversity. Leaf metabolomes responded more often to tree diversity level than exudates, whereas root metabolomes varied the least. We found no uniform or general pattern of alterations in metabolite richness or diversity in response to variation in tree diversity. The response differed among species and tissues. Synthesis . Classification of metabolites supported initial ecological interpretation of differences among species and organs. Particularly, the metabolomes of leaves and root exudates respond to differences in tree diversity. These responses were neither linear nor uniform and individual metabolites showed different dynamics. More controlled interaction experiments are needed to dissect the causes and consequences of the observed shifts in plant metabolomes

    Natural Variation of Transcriptional Auxin Response Networks in Arabidopsis thaliana[C][W][OA]

    No full text
    In this study, physiological, comparative transcriptomic, and network analysis approaches identify extensive natural variation of auxin responses among A. thaliana accessions. Expression level variation in auxin signaling genes is hypothesized to contribute to downstream variation in large auxin-regulated gene clusters

    Perspectives on the Future of Ice Nucleation Research: Research Needs and Unanswered Questions Identified from Two International Workshops

    No full text
    There has been increasing interest in ice nucleation research in the last decade. To identify important gaps in our knowledge of ice nucleation processes and their impacts, two international workshops on ice nucleation were held in Vienna, Austria in 2015 and 2016. Experts from these workshops identified the following research needs: (1) uncovering the molecular identity of active sites for ice nucleation; (2) the importance of modeling for the understanding of heterogeneous ice nucleation; (3) identifying and quantifying contributions of biological ice nuclei from natural and managed environments; (4) examining the role of aging in ice nuclei; (5) conducting targeted sampling campaigns in clouds; and (6) designing lab and field experiments to increase our understanding of the role of ice-nucleating particles in the atmosphere. Interdisciplinary teams of scientists should work together to establish and maintain a common, unified language for ice nucleation research. A number of commercial applications benefit from ice nucleation research, including the production of artificial snow, the freezing and preservation of water-containing food products, and the potential modulation of weather. Additional work is needed to increase our understanding of ice nucleation processes and potential impacts on precipitation, water availability, climate change, crop health, and feedback cycles.© 2017 by the author
    corecore