36 research outputs found

    Secondary metabolites in fungus-plant interactions

    Get PDF
    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The rewiew introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicing of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed

    Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food

    Get PDF
    Iron-mediated oxidation of low-density lipoprotein has been implicated in the pathogenesis of vascular disorders such as atherosclerosis. The present investigations were performed to test whether hydrophobic fungal siderophores – hexadentate trihydroxamates desferricoprogen, desferrichrome, desferrirubin, and desferrichrysin – might suppress heme-catalyzed LDL oxidation and the toxic effects of heme-treated LDL on vascular endothelium. Indeed, two of these – desferricoprogen and desferrichrome – markedly increased the resistance of LDL to heme-catalyzed oxidation. In similar dose–response fashion, these siderophores also inhibited the generation of LDL products cytotoxic to human vascular endothelium. When iron-free fungal siderophores were added to LDL/heme oxidation reactions, the product failed to induce heme oxygenase-1, a surrogate marker for the noncytocidal effects of oxidized LDL (not in the case of desferrichrysin). Desferricoprogen also hindered the iron-mediated peroxidation of lipids from human atherosclerotic soft plaques in vitro, and was taken up in the gastrointestinal tract of rat. The absorbed siderophore was accumulated in the liver and was secreted in its iron-complexed form in the feces and urine. The consumption of mold-ripened food products such as aged cheeses and the introduction of functional foods and food additives rich in fungal iron chelators in diets may lower the risk of cardiovascular diseases

    Heme Oxygenase-1 (HMX1) Loss of Function Increases the In-Host Fitness of the Saccharomyces ‘boulardii’ Probiotic Yeast in a Mouse Fungemia Model

    Get PDF
    The use of yeast-containing probiotics is on the rise; however, these products occasionally cause fungal infections and possibly even fungemia among susceptible probiotic-treated patients. The incidence of such cases is probably underestimated, which is why it is important to delve deeper into the pathomechanism and the adaptive features of S. ‘boulardii’. Here in this study, the potential role of the gene heme oxygenase-1 (HMX1) in probiotic yeast bloodstream-derived infections was studied by generating marker-free HMX1 deletion mutants with CRISPR/Cas9 technology from both commercial and clinical S. ‘boulardii’ isolates. The six commercial and clinical yeasts used here represented closely related but different genetic backgrounds as revealed by comparative genomic analysis. We compared the wild-type isolates against deletion mutants for their tolerance of iron starvation, hemolytic activity, as well as kidney burden in immunosuppressed BALB/c mice after lateral tail vein injection. Our results reveal that the lack of HMX1 in S. ‘boulardii’ significantly (p < 0.0001) increases the kidney burden of the mice in most genetic backgrounds, while at the same time causes decreased growth in iron-deprived media in vitro. These findings indicate that even a single-gene loss-of-function mutation can, surprisingly, cause elevated fitness in the host during an opportunistic systemic infection. Our findings indicate that the safety assessment of S. ‘boulardii’ strains should not only take strain-to-strain variation into account, but also avoid extrapolating in vitro results to in vivo virulence factor determination

    Effects of hemin, CO<sub>2</sub>, and pH on the branching of Candida albicans filamentous forms

    Get PDF
    Morphological transitions of wild-type and oxidative stress-tolerant Candida albicans strains were followed in the RPMI-FBS culture medium at pH values and CO2 levels characteristic for the anatomical niches inhabited by this opportunistic human pathogen fungus, including the oral cavity as well as the intestinal and vaginal lumens. Selected cultures were also supplemented with hemin modeling bleedings. Germination as well as elongation and branching of hyphae were monitored in the cultures using time-lapse video microscopy. Unexpectedly, branching time, which is defined as the time taken until the first branch of hypha emerges for the first time after germination, correlated well with alterations in the environmental conditions meanwhile no such correlations were found for germination time (time lasted until the appearance of the germination tube). Based on these observations, hypotheses were set up to estimate the significance of branching time in the pathogenesis of both superficial and systemic candidiases

    Commercial strain-derived clinical Saccharomyces cerevisiae can evolve new phenotypes without higher pathogenicity

    Get PDF
    Scope: Saccharomyces cerevisiae is one of the most important microbes in food industry, but there is growing evidence on its potential pathogenicity as well. Its status as a member of human mycobiome is still not fully understood.Methods and results: In this study, we characterise clinical S. cerevisiae isolates from Hungarian hospitals along with commercial baking and probiotic strains, and determine their phenotypic parameters, virulence factors, interactions with human macrophages, and pathogenicity. Four of the clinical isolates could be traced back to commercial strains based on genetic fingerprinting. Our observations indicate that the commercial-derived clinical isolates have evolved new phenotypes and show similar, or in two cases, significantly decreased pathogenicity. Furthermore, immunological experiments revealed that the variability in human primary macrophage activation after co-incubation with yeasts is largely donor- and not isolate-dependent.Conclusion: Isolates in this study offer an interesting insight into the potential microevolution of probiotic and food strains in human hosts. These commensal yeasts display various changes in their phenotypes, indicating that the colonization of the host does not necessarily impose a selective pressure towards higher virulence/pathogenicity
    corecore