30 research outputs found

    Enantioselectivity of human AMP, dTMP and UMP-CMP kinases

    Get PDF
    l-Nucleoside analogues such as lamivudine are active for treating viral infections. Like d-nucleosides, the biological activity of the l-enantiomers requires their stepwise phosphorylation by cellular or viral kinases to give the triphosphate. The enantioselectivity of NMP kinases has not been thoroughly studied, unlike that of deoxyribonucleoside kinases. We have therefore investigated the capacity of l-enantiomers of some natural (d)NMP to act as substrates for the recombinant forms of human uridylate-cytidylate kinase, thymidylate kinase and adenylate kinases 1 and 2. Both cytosolic and mitochondrial adenylate kinases were strictly enantioselective, as they phosphorylated only d-(d)AMP. l-dTMP was a substrate for thymidylate kinase, but with an efficiency 150-fold less than d-dTMP. Both l-dUMP and l-(d)CMP were phosphorylated by UMP-CMP kinase although much less efficiently than their natural counterparts. The stereopreference was conserved with the 2′-azido derivatives of dUMP and dUMP while, unexpectedly, the 2′-azido-d-dCMP was a 4-fold better substrate for UMP-CMP kinase than was CMP. Docking simulations showed that the small differences in the binding of d-(d)NMP to their respective kinases could account for the differences in interactions of the l-isomers with the enzymes. This in vitro information was then used to develop the in vivo activation pathway for l-dT

    Structural Insights into the Inhibition of Cytosolic 5′-Nucleotidase II (cN-II) by Ribonucleoside 5′-Monophosphate Analogues

    Get PDF
    Cytosolic 5′-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5′-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues

    Revaluation of biomass-derived furfuryl alcohol derivatives for the synthesis of carbocyclic nucleoside phosphonate analogues

    No full text
    The racemic synthesis of new carbocyclic nucleoside methylphosphonate analogues bearing purine bases (adenine and guanine) was accomplished using bio-sourced furfuryl alcohol derivatives. All compounds were prepared using a Mitsunobu coupling between the heterocyclic base and an appropriate carbocyclic precursor. After deprotection, the compounds were evaluated for their activity against a large number of viruses. However, none of them showed significant antiviral activity or cytotoxicity

    An alternative pathway to ribonucleoside β-hydroxyphosphonate analogues and related prodrugs.

    No full text
    International audienceNucleoside β-(S)-hydroxyphosphonate analogues have recently proven to be interesting bioactive compounds as 5'-nucleotidase inhibitors. These derivatives were obtained in a pyrimidine series through an ex-chiral pool pathway or the stereoselective reduction of a β-ketophosphonate intermediate. Herein, an original synthesis of these compounds using nucleoside epoxide intermediates, containing either a pyrimidine or a purine as nucleobase, was explored and allowed the direct synthesis of the corresponding bis S-acyl-2-thioethyl (SATE) prodrugs

    Synthesis of pyrimidine containing nucleoside β-(R/S)-hydroxyphosphonate analogues

    No full text
    A concise route to nucleoside β-hydroxyphosphonate analogues is described. The use of a nucleoside β-ketophosphonate as the key intermediate allowed both the (R) and (S) isomers of β-hydroxyphosphonate analogues in the pyrimidine series to be accessed. Such derivatives may be considered as stable mimics of 5′-monophosphate nucleosides and, therefore, could be the starting point for the development of potential therapeutic agents

    Phosphopeptide Prodrug Bearing an S

    No full text

    Synthesis and study of (R)- and (S)-β-hydroxyphosphonate acyclonucleosides as structural analogues of (S)-HPMPC (cidofovir).

    No full text
    International audienceA synthetic pathway to new acyclonucleoside phosphonates, designed as analogues of cidofovir, is described. The reduction of a β-ketophosphonate intermediate, readily available from the nucleobase and benzylacrylate, afforded an enantiomeric mixture of (R)- and (S)-β-hydroxyphosphonate derivatives which was resolved. The assignment of the absolute configuration was proposed on the basis of NMR studies. The influence of this modification, the presence of the hydroxyl group and chirality on the β-position related to the phosphorus atom, on antiviral activity against a broad variety of DNA and RNA viruses and also on the capacity to be recognized as substrates by human NMP kinases was investigated
    corecore