30 research outputs found
Review of Defective NADPH Oxidase Activity and Myeloperoxidase Release in Neutrophils From Patients With Cirrhosis
Patients with decompensated cirrhosis are highly susceptible to develop bacterial infections and these can trigger multiorgan failure associated with high in-hospital mortality. Neutrophils from patients with decompensated cirrhosis exhibit marked alterations that may explain the susceptibility of these patients to develop bacterial infections. These neutrophil alterations include marked defects in intracellular signaling pathways involving serine/threonine kinases such as protein kinase B (AKT), p38-mitogen-activated protein kinase (MAPK), and the MAP kinases1/2; activation of the NADPH oxidase complex; myeloperoxidase (MPO) release; and bactericidal activity of neutrophils stimulated by the bacterial peptide formyl-Methionine-Leucine-Phenylalanine (fMLF). Impaired activity of the NADPH oxidase 2 (NOX2) complex is also related to reduced levels of expression of its major components through post-transcriptional mechanisms. In addition, the catalytic NOX2 component gp91phox is subject to degradation by elastase highly present in patients' plasma. A defect in the protein kinase B (AKT) and p38 MAPK-mediated signaling pathways may explain the decrease in phosphorylation of p47phox (an important component of the NADPH oxidase complex) and MPO release, in response to neutrophil stimulation by fMLF. Most of these alterations are reversible ex vivo with TLR7/8 agonists (CL097, R848), raising the possibility that these agonists might be used in the future to restore neutrophil antibacterial functions in patients with cirrhosis
Nifedipine protects against overproduction of superoxide anion by monocytes from patients with systemic sclerosis
We have reported previously that dihydropyridine-type calcium-channel antagonists (DTCCA) such as nifedipine decrease plasma markers of oxidative stress damage in systemic sclerosis (SSc). To clarify the cellular basis of these beneficial effects, we investigated the effects in vivo and in vitro of nifedipine on superoxide anion (O(2)(•-)) production by peripheral blood monocytes. We compared 10 healthy controls with 12 patients with SSc, first after interruption of treatment with DTCCA and second after 2 weeks of treatment with nifedipine (60 mg/day). O(2)(•- )production by monocytes stimulated with phorbol myristate acetate (PMA) was quantified by the cytochrome c reduction method. We also investigated the effects in vitro of DTCCA on O(2)(•- )production and protein phosphorylation in healthy monocytes and on protein kinase C (PKC) activity using recombinant PKC. After DTCCA had been washed out, monocytes from patients with SSc produced more O(2)(•- )than those from controls. Nifedipine treatment considerably decreased O(2)(•- )production by PMA-stimulated monocytes. Treatment of healthy monocytes with nifedipine in vitro inhibited PMA-induced O(2)(•- )production and protein phosphorylation in a dose-dependent manner. Finally, nifedipine strongly inhibited the activity of recombinant PKC in vitro. Thus, the oxidative stress damage observed in SSc is consistent with O(2)(•- )overproduction by primed monocytes. This was decreased by nifedipine treatment both in vivo and in vitro. This beneficial property of nifedipine seems to be mediated by its cellular action and by the inhibition of PKC activity. This supports the hypothesis that this drug could be useful for the treatment of diseases associated with oxidative stress
Characterization of Blood Immune Cells in Patients With Decompensated Cirrhosis Including ACLF
Background and Aims: Patients with cirrhosis and acute-on-chronic liver failure (ACLF) have immunosuppression, indicated by an increase in circulating immune-deficient monocytes. The aim of this study was to investigate simultaneously the major blood-immune cell subsets in these patients. Material and Methods: Blood taken from 67 patients with decompensated cirrhosis (including 35 critically ill with ACLF in the intensive care unit), and 12 healthy subjects, was assigned to either measurements of clinical blood counts and microarray (genomewide) analysis of RNA expression in whole-blood; microarray (genomewide) analysis of RNA expression in blood neutrophils; or assessment of neutrophil antimicrobial functions. Results: Several features were found in patients with ACLF and not in those without ACLF. Indeed, clinical blood count measurements showed that patients with ACLF were characterized by leukocytosis, neutrophilia, and lymphopenia. Using the CIBERSORT method to deconvolute the whole-blood RNA-expression data, revealed that the hallmark of ACLF was the association of neutrophilia with increased proportions of macrophages M0-like monocytes and decreased proportions of memory lymphocytes (of B-cell, CD4 T-cell lineages), CD8 T cells and natural killer cells. Microarray analysis of neutrophil RNA expression revealed that neutrophils from patients with ACLF had a unique phenotype including induction of glycolysis and granule genes, and downregulation of cell-migration and cell-cycle genes. Moreover, neutrophils from these patients had defective production of the antimicrobial superoxide anion. Conclusions: Genomic analysis revealed that, among patients with decompensated cirrhosis, those with ACLF were characterized by dysregulation of blood immune cells, including increases in neutrophils (that had a unique phenotype) and macrophages M0-like monocytes, and depletion of several lymphocyte subsets (including memory lymphocytes). All these lymphocyte alterations, along with defective neutrophil superoxide anion production, may contribute to immunosuppression in ACLF, suggesting targets for future therapies
Peptide-Based Inhibitors Of The Phagocyte Nadph Oxidase
International audiencePhagocytes such as neutrophils, monocytes and macrophages play an essential role in host defenses against pathogens. To kill these pathogens, phagocytes produce and release large quantities of antimicrobial molecules such as reactive oxygen species (ROS), microbicidal peptides, and proteases. The enzyme responsible for ROS generation is called NADPH oxidase, or respiratory burst oxidase, and is composed of six proteins: gp91phox, p22phox, p47phox, p67phox, p40phox and Rac1/2. The vital importance of this enzyme in host defenses is illustrated by a genetic disorder called chronic granulomatous disease (CGD), in which the phagocyte NADPH oxidase is dysfunctional, leading to life-threatening recurrent bacterial and fungal infections. However, excessive NADPH oxidase activation and ROS overproduction can damage surrounding tissues and participate in exaggerated inflammatory processes. As ROS production is believed to be involved in several inflammatory diseases, specific phagocyte NADPH oxidase inhibitors might have therapeutic value. In this commentary, we summarize the structure and activation of the phagocyte NADPH oxidase, and describe pharmacological inhibitors of this enzyme, with particular emphasis on peptide-based inhibitors derived from gp91phox, p22phox and p47phox
Les familles fréquentant les établissements d’accueil du jeune enfant à La Réunion. Une étude réalisée en 2015 auprès des gestionnaires des structures
Cally Jean-Romain, Périanin Patrick. Les familles fréquentant les établissements d’accueil du jeune enfant à La Réunion. Une étude réalisée en 2015 auprès des gestionnaires des structures. In: Revue des politiques sociales et familiales, n°124, 2017. Dossier « Politiques sociales et familles : perspectives internationales ». pp. 85-95
Immunochemical identification and translocation of protein kinase C zeta in human neutrophils
AbstractWestern blots of human polymorphonuclear leukocyte (PMN) extracts were immunostained with antibodies specific for various protein kinase C (PKC) isoforms. Two bands corresponding to PKC type ξ with apparent molecular masses of 81 kDa and 76 kDa were identified in the cytosolic fraction of resting cells, in addition to PKC types α and β. PKCξ was apparently abundant, like PKCβ, whereas PKCδ, -ε, and -γ were not detectable. Following short stimulation (5 min) of PMN with phorbol-12-myristate-13-acetate (1 μ/ml), physical translocation of PKCξ from the cytosol to the plasma membrane fraction occurred, although this isoform does not bind phorbol esters. These data show that, in addition to the two calcium-dependent isoenzymes α and β, human PMN express a calcium-independent isoenzyme ξ which translocates in stimulated cells, suggesting a role in the regulation of antibacterial activities