6 research outputs found

    Analysis of sexual phenotype and prezygotic fertility in natural populations of Fucus spiralis, F. vesiculosus (Fucaceae, Phaeophyceae) and their putative hybrids

    Get PDF
    In the genus Fucus, the character dioecy/hermaphroditism has undergone multiple state changes and hybridization is possible between taxa with contrasting mating systems, e.g. between the dioecious Fucus vesiculosus and the hermaphrodite F. spiralis. In the context of mating system evolution, we evaluated the potential consequences of hybridization by studying the variation in sexual phenotype and prezygotic fertility. Firstly, as a result of hybridization between the two sexual systems, gender variation may arise depending on the relative importance of genes with large versus small phenotypic effects. We thus qualitatively examined the extent of gender variation within and among individual hybrids in comparison with both parental species. Secondly, if hybridization breaks up co-adapted gene complexes, hybrid fertility may be reduced in comparison with both parental species. Therefore, we also quantified male and female prezygotic fertility in parental species and their hybrids in order to test for reduction in hybrid fitness. A total of 89 sexually mature individuals (20 F. spiralis, 40 F. vesiculosus, 10 hermaphrodite hybrids and 19 dioecious hybrids) were sampled in two geographically distant regions (France and Portugal) and six conceptacles per individual were observed. Within-individual variation was very restricted qualitatively – only one hybrid carried a conceptacle with a different sexual phenotype from the five others – as well as quantitatively. This suggests a simple genetic system for sex determination involving a few genes with major effects. In addition, analyses showed no significant decrease in hybrid fertility compared with parental species. Moreover, hybrids exhibited all sexual phenotypes, suggesting several generations of hybridization and backcrossing and, therefore, that hybrids are reproductively successful. Finally, the occurrence of sterile paraphyses in female and hermaphrodite individuals was interpreted as a relic of male function and suggests that, as in higher plants, evolution from hermaphroditism to dioecy may be the most parsimonious pathway

    Neogene Eastern Amazon carbonate platform and the palaeoenvironmental interpretation

    No full text

    Foraminiferal biotopes and their distribution control in Ria de Aveiro (Portugal): a multiproxy approach

    No full text
    Ria de Aveiro, which is located in the centre of Portugal (40° 38' N, 8° 45' W), is a well-mixed and complex coastal lagoon that is separated from the sea by a sandy barrier and connects with the Atlantic through an artificial inlet. Tidal currents are the main factor controlling the lagoon's hydrodynamics and, to a great extent, the sedimentary dynamic. The inner lagoonal zones receive input from several rivers and experience the pressure caused by the accumulation of organic matter and pollutants (namely, trace metals) from diverse anthropic activities. This paper is the first piece of work aiming to recognize, characterize and explain the main benthic foraminiferal biotopes in Ria de Aveiro. To provide a broad overview of this kind of setting, our results are compared to those of previous published studies conducted in similar transitional environments. The research is based on an investigation of 225 sites spread throughout this ecosystem. Utilizing a statistical approach, this study analyses the details of dead benthic foraminiferal assemblages composed of 260 taxa, the texture and composition (mineralogical and geochemical) of the sediment and physicochemical data. On the basis of the results of R-mode and Q-mode cluster analyses, several different biotopes can be defined as marsh biotope/near-marsh biotope; marginal urban/marginal urban mixing biotope; inner-outer lagoon biotope or enclosed lagoon; outer lagoon biotope, mixed sub-biotope; and outer lagoon, marine sub-biotope. These biotopes are related to foraminifera assemblages and substrate type and are influenced by local currents, water depth, chemical and physicochemical conditions, river or oceanic proximity, and anthropogenic impact, as evidenced by the mapping of the six factor loadings of the principal component analysis conducted herein. Based on a similar methodology of analysis as that applied in previous studies in the Lagoon of Venice, comparable biotypes were identified in Lagoon of Aveiro
    corecore