2 research outputs found

    Influence of substituents of Perylenebisimides on the surface energy and wettability: A systematic structure–property relationship analysis

    Get PDF
    This paper seeks to elucidate the influence on the surface wettability of a variety of substituents located in different positions of the perylene bisimide (PBI) core (ortho versus imide) with distinct electron-donor or -withdrawing character and diverse steric demand, using for this more than 20 planar PBIs. The correlation between the polarity of the individual functional group on the PBI and the surface wettability has been addressed by means of substituent descriptors in terms of Hansch-Fujita π parameter, Hammett σmeta and σpara constants, and steric parameters (Taft-Dubois Es’ and Charton υ). With these parameters, a quantitative structure–property relationship (QSPR) analysis has been performed using multivariable linear regression (MLR) fittings. The relationship of Surface Energy, determined by the static contact angle method with three different solvents, to structural properties of PBIs is described. As well, the polar and dispersive contributions have been determined. For planar PBIs, a predominant influence of the substituents in the imide position on the surface wettability has been found despite of the electronic nature and steric hindrance of the substituents simultaneously located in ortho positions. This effect is more pronounced with the longer alkyl substituents at the imide position. This study paves the way for a rational chromophore design considering the on surface behavior, which will ultimately condition the contact and thus their performance in optoelectronic devices

    Carboxylates versus fluorines: Boosting the emission properties of commercial BODIPYs in liquid and solid media

    No full text
    A new and facile strategy for the development of photonic materials is presented that fufills the conditions of being efficient, stable, and tunable laser emitters over the visible region of spectrum, with the possibility of being easily processable and cost-effective. This approach uses poly(methyl methacrylate) (PMMA) as a host for new dyes with improved efficiency and photostability synthesized. Using a simple protocol, fluorine atoms in the commercial (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) (F-BODIPY) by carboxylate groups. The new O-BODIPYs exhibit enhanced optical properties and laser behavior both in the liquid and solid phases compared to their commercial analogues. Lasing efficiencies up to 2.6 times higher than those recorded for the commercial dyes are registered with high photostabilities since the laser output remain at 80% of the initial value after 100 000 pump pulses in the same position of the sample at a repetition rate of 30 Hz; the corresponding commercial dye entirely loses its laser action after only 12 000 pump pulses. Distributed feedback laser emission is demonstrated with organic films incorporating new O-BODIPYs deposited onto quartz substrates engraved with appropriated periodical structures. These dyes exhibit laser thresholds up to two times lower than those of the corresponding parent dyes with lasing intensities up to one order of magnitude higher. The development of new O-BODIPYs, synthesized via the replacement of fluorine atoms by carboxylate groups in commercial (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) (F-BODIPYs), is a successful strategy to obtain optimized laser dyes. Poly(methyl methacrylate) (PMMA) doped with these new derivatives leads to laser materials that are economically affordable and have optimized emission properties in the visible spectral region. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Peer Reviewe
    corecore