108 research outputs found

    pH effect on zinc recovery from the spent pickling baths of hot dip galvanizing industries

    Full text link
    [EN] In this work, the pH effect on the zinc electrowinning present in the spent pickling baths (SPBs) is analysed with the aim of decreasing the energetic cost of the process. Specifically, the effect of increasing the initial pH with and without its control during the whole electrolysis experiment is studied on synthetic solutions with concentration values similar to those present in the spent pickling baths. Finally, real SPBs are treated under pH control and the results obtained are also compared with those acquired with the direct electrolysis of these SPBs in a membrane reactor. The modification of the initial pH on synthetic solutions shows an increase in zinc deposition rate as the initial pH is risen. However, the zinc redissolution phenomenon is present during the whole experiment. On the other hand, when the pH is controlled, the results obtained are much better as zinc redissolution is prevented and the hydrogen evolution reaction rate is decreased. Comparing the behaviour between the reactor under pH control and that in the presence of an anion exchange membrane, reflects zinc conversion values slightly higher for the membrane reactor due to the zinc precipitation occurring in the reactor under pH control, which is higher as the pH rises. However, the specific energy consumption is considerably higher in the membrane reactor mainly due to the ohmic drop introduced by the membrane. (C) 2016 Elsevier B.V. All rights reserved.Carrillo Abad, J.; GarcĂ­a GabaldĂłn, M.; PĂ©rez-Herranz, V. (2017). pH effect on zinc recovery from the spent pickling baths of hot dip galvanizing industries. Separation and Purification Technology. 177:21-28. doi:10.1016/j.seppur.2016.12.034S212817

    Study of the zinc recovery from spent pickling baths by means of an electrochemical membrane reactor using a cation-exchange membrane under galvanostatic control

    Full text link
    The performance of a cation-exchange membrane (CEM) used for recovering zinc from real spent pickling baths is studied in this work. These spent baths contain high amounts of ZnCl2 and FeCl2 in aqueous HCl media. The results obtained with this membrane are compared with those obtained with an anion-exchange membrane (AEM) treating the same effluent. The effect of the presence or absence of initial zinc in the cathodic compartment is also studied. The absence of initial zinc in the cathodic compartment in the CEM experiments permits iron codeposition. Furthermore, the results obtained with the CEM are worse than those obtained with the AEM for all the figures of merit. This fact shows the need of filling the cathodic compartment with a synthetic zinc solution. The presence of zinc in the cathodic compartment from the beginning of the electrolysis not only inhibits iron codeposition but also favors zinc deposition as the hydrogen evolution reaction becomes a secondary reaction, improving by this way the results of all the figures of merit of the reactor with the CEM. A deep study about the effect of the applied current and the concentration of the synthetic zinc solution placed in the cathodic compartment permits to reach the equilibrium between the zinc transferred through the membrane and that deposited on the cathode. Therefore, the synthetic cathodic zinc is not consumed at any time. Moreover, under this circumstances iron codeposition is also avoided.The authors want to express their gratitude to the Generalitat Valenciana for a postgraduate Grant (GV/2010/029) and to the Ministerio de Economia y Competitividad for financing the project number CTQ2012-37450-C02-01/PPQ.Carrillo Abad, J.; GarcĂ­a GabaldĂłn, M.; PĂ©rez Herranz, V. (2014). Study of the zinc recovery from spent pickling baths by means of an electrochemical membrane reactor using a cation-exchange membrane under galvanostatic control. Separation and Purification Technology. 132:479-486. https://doi.org/10.1016/j.seppur.2014.05.052S47948613

    Efecto del tipo y cantidad de alúmina como dopante sobre la densificación y las propiedades eléctricas de electrodos cerámicos de óxido de zinc

    Get PDF
    [EN] Aluminum-doped zinc oxide (AZO) electrodes can be a good alternative to replace the expensive electrodes (Ti, ITO, FTO, etc.), which are used in the electrooxidation process to remove refractory and emergent contaminants from industrial wastewaters. AZO electrodes have been prepared by the traditional ceramic method using ZnO as the main raw material and different precursors of Al2O3 as dopant sources. Densification, microstructure and electric resistivity of AZO electrodes are a function of precursor's nature and sintering thermal treatment. The higher the number of precursor's particles and the smaller their size, the sintering temperature needed to attain high densifications and low resistivities shifted to higher values. Micrometric and colloidal alumina were the precursors which allowed to equilibrate an affordable sintering temperature interval (1200-1300 degrees C) with acceptable densification and resistivity values (around 95% and 5 x 10(-3) Omega cm, respectively). However, colloidal alumina made it possible to obtain slightly lower values of resistivity at the cost of having a narrower working interval.[ES] En este trabajo de investigación se presentan electrodos cerámicos de óxido de zinc dopado con aluminio (AZO) como alternativa a los actuales electrodos de titanio (ITO, FTO. . .) utilizados en el proceso de electrooxidación de aguas residuales para la eliminación de contaminantes refractarios y emergentes. Estos electrodos AZO han sido preparados mediante el método tradicional cerámico, utilizando ZnO como materia prima principal y diferentes precursores de Al2O3 como dopantes. La densificación, la microestructura y la resistividad eléctrica de estos electrodos son propiedades que están directamente relacionadas con la naturaleza del precursor y con eltratamiento térmico utilizado para su sinterización. Cuanto mayor es el número de partículas del precursor y menor es su tamano, ¿ la temperatura de sinterización necesaria para lograr altas densificaciones y bajas resistividades cambia a valores más altos. Fueron la alúmina micrométrica y la coloidal los dopantes que ofrecieron un buen equilibrio entre temperatura de sinterización (1.200¿1.300 ¿C) y densificación-resistividad (95% y 5·10¿3 cm, respectivamente). Concretamente en el caso de la alúmina coloidal, se pudieron optimizar estos resultados estrechando el intervalo de temperatura de trabajo.The authors thanks to"Ministerio de Economia y Competitividad" and "Fondo Europeo de Desarrollo Regional" the support to this research [Plan Nacional de I+D, project Ref. CTQ2015-65202-C2-2-R (MINECO/FEDER)].Sánchez-Rivera, M.; Orts, M.; Pérez-Herranz, V.; Mestre, S. (2021). Effect of type and amount of alumina as dopant over the densification and the electrical properties of zinc oxide ceramic electrodes. Boletín de la Sociedad Española de Cerámica y Vidrio. 60(1):53-61. https://doi.org/10.1016/j.bsecv.2020.01.003536160

    Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method

    Full text link
    [EN] Ohm's generalized law defines the concept of impedance. This law, and thus the definition itself, are only valid if the system fulfills the linearity condition. However, electrochemical systems are typically highly nonlinear. Consequently, the linearity condition can only be achieved in these systems if a low perturbation amplitude is used for performing EIS measurements. Nevertheless, the use of low amplitude perturbations leads to low signal-to-noise ratios, which result in high measurement errors. The concept of optimum amplitude arises from this tradeoff: the perturbation has to have an amplitude big enough in order to minimize the measurement errors (i.e. maximize the SNR), but at the same time, the perturbation has to have an amplitude small enough to avoid the generation of significant nonlinear effects that would distort the measured EIS spectra. In a previous work, a linearity assessment quantitative method based on the total harmonic distortion parameter was developed. In this work, the aforementioned THD method was applied for the perturbation amplitude selection for EIS measurements in a highly nonlinear model system: the cathodic electrode of an alkaline water electrolyzer. The THD method successfully obtained the optimum amplitudes both, for a constant amplitude strategy and for a frequency dependent strategy. The THD method also allowed to obtain the noise structure and to quantify the nonlinear effects. This method is slightly superior to the U-P method, a method based on the harmonic analysis of the output signal that was developed in earlier works. (C) 2018 The Electrochemical Society.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; Pérez-Herranz, V. (2018). Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method. Journal of The Electrochemical Society. 165(10):E488-E497. https://doi.org/10.1149/2.1021810jesSE488E49716510Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. doi:10.1007/bf02368532Yuksel, R., Uysal, N., Aydinli, A., & Unalan, H. E. (2018). Paper Based, Expanded Graphite/Polypyrrole Nanocomposite Supercapacitors Free from Binders and Current Collectors. Journal of The Electrochemical Society, 165(2), A283-A290. doi:10.1149/2.1051802jesWang, C., Xiong, Y., Wang, H., Yang, N., Jin, C., & Sun, Q. (2018). «Pickles Method» Inspired Tomato Derived Hierarchical Porous Carbon for High-Performance and Safer Capacitive Output. Journal of The Electrochemical Society, 165(5), A1054-A1063. doi:10.1149/2.1001805jesZhou, X., Cao, L., Li, Z., Zhang, M., Kang, W., & Cheng, B. (2018). Rapid Synthesis of 3D Porous Nitrogen-Doped Carbon Nanospheres (N-CNSs) and Carbon Nanoboxes (CNBs) for Supercapacitor Electrodes. Journal of The Electrochemical Society, 165(5), A918-A923. doi:10.1149/2.0761805jesRanjith, P. M., Rao, M. T., Sapra, S., Suni, I. I., & Srinivasan, R. (2018). On the Anodic Dissolution of Tantalum and Niobium in Hydrofluoric Acid. Journal of The Electrochemical Society, 165(5), C258-C269. doi:10.1149/2.0691805jesJi, G., Macía, L. F., Allaert, B., Hubin, A., & Terryn, H. (2018). Odd Random Phase Electrochemical Impedance Spectroscopy to Study the Corrosion Behavior of Hot Dip Zn and Zn-Alloy Coated Steel Wires in Sodium Chloride Solution. Journal of The Electrochemical Society, 165(5), C246-C257. doi:10.1149/2.0741805jesHorvath, D., & Simpson, M. F. (2018). Electrochemical Monitoring of Ni Corrosion Induced by Water in Eutectic LiCl-KCl. Journal of The Electrochemical Society, 165(5), C226-C233. doi:10.1149/2.0391805jesBertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(1), 31. doi:10.1149/1.1837361Bertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(1), 37. doi:10.1149/1.1837362Bertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(8), 2786. doi:10.1149/1.1837896Vijayakumar, E., Kang, S.-H., & Ahn, K.-S. (2018). Facile Electrochemical Synthesis of Manganese Cobalt Sulfide Counter Electrode for Quantum Dot-Sensitized Solar Cells. Journal of The Electrochemical Society, 165(5), F375-F380. doi:10.1149/2.1211805jesKharel, P. L., Zamborini, F. P., & Alphenaar, B. W. (2018). Enhancing the Photovoltaic Performance of Dye-Sensitized Solar Cells with Rare-Earth Metal Oxide Nanoparticles. Journal of The Electrochemical Society, 165(3), H52-H56. doi:10.1149/2.1311802jesGong, C., Hong, X., Xiang, S., Wu, Z., Sun, L., Ye, M., & Lin, C. (2018). NiS2Nanosheet Films Supported on Ti Foils: Effective Counter Electrodes for Quantum Dot-Sensitized Solar Cells. Journal of The Electrochemical Society, 165(3), H45-H51. doi:10.1149/2.0171803jesMitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., & Narayanan, S. R. (2018). An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. Journal of The Electrochemical Society, 165(5), F392-F400. doi:10.1149/2.1371805jesYoon, S., Kim, J., Lim, J.-H., & Yoo, B. (2018). Cobalt Iron-Phosphorus Synthesized by Electrodeposition as Highly Active and Stable Bifunctional Catalyst for Full Water Splitting. Journal of The Electrochemical Society, 165(5), H271-H276. doi:10.1149/2.1221805jesFrey, C. E., Fang, Q., Sebold, D., Blum, L., & Menzler, N. H. (2018). A Detailed Post Mortem Analysis of Solid Oxide Electrolyzer Cells after Long-Term Stack Operation. Journal of The Electrochemical Society, 165(5), F357-F364. doi:10.1149/2.0961805jesGiner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137Atar, N., & Yola, M. L. (2018). Core-Shell Nanoparticles/Two-Dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. Journal of The Electrochemical Society, 165(5), H255-H262. doi:10.1149/2.1311805jesWippermann, K., Giffin, J., & Korte, C. (2018). In Situ Determination of the Water Content of Ionic Liquids. Journal of The Electrochemical Society, 165(5), H263-H270. doi:10.1149/2.0991805jesZhou, W.-H., Wang, H.-H., Li, W.-T., Guo, X.-C., Kou, D.-X., Zhou, Z.-J., … Wu, S.-X. (2018). Gold Nanoparticles Sensitized ZnO Nanorods Arrays for Dopamine Electrochemical Sensing. Journal of The Electrochemical Society, 165(12), G3001-G3007. doi:10.1149/2.0011811jesNakpetpoon, W., Vongsetskul, T., Limthongkul, P., & Tammawat, P. (2018). Disodium Terephthalate Ultrafine Fibers as High Performance Anode Material for Sodium-Ion Batteries under High Current Density Conditions. Journal of The Electrochemical Society, 165(5), A1140-A1146. doi:10.1149/2.0821805jesLandesfeind, J., Eldiven, A., & Gasteiger, H. A. (2018). Influence of the Binder on Lithium Ion Battery Electrode Tortuosity and Performance. Journal of The Electrochemical Society, 165(5), A1122-A1128. doi:10.1149/2.0971805jesCheng, Q., & Zhang, Y. (2018). Multi-Channel Graphite for High-Rate Lithium Ion Battery. Journal of The Electrochemical Society, 165(5), A1104-A1109. doi:10.1149/2.1171805jesXia, S., Li, F., Cheng, F., Li, X., Sun, C., Liu, J.-J., & Hong, G. (2018). Synthesis of Spherical Fluorine Modified Gradient Li-Ion Battery Cathode Material LiNi0.80Co0.15Al0.05O2by Simple Solid Phase Method. Journal of The Electrochemical Society, 165(5), A1019-A1026. doi:10.1149/2.1021805jesGarsany, Y., Atkinson, R. W., Sassin, M. B., Hjelm, R. M. E., Gould, B. D., & Swider-Lyons, K. E. (2018). Improving PEMFC Performance Using Short-Side-Chain Low-Equivalent-Weight PFSA Ionomer in the Cathode Catalyst Layer. Journal of The Electrochemical Society, 165(5), F381-F391. doi:10.1149/2.1361805jesGiner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093Liu, H., George, M. G., Ge, N., Muirhead, D., Shrestha, P., Lee, J., … Bazylak, A. (2018). Microporous Layer Degradation in Polymer Electrolyte Membrane Fuel Cells. Journal of The Electrochemical Society, 165(6), F3271-F3280. doi:10.1149/2.0291806jesOrazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken (2008).Lasia A. , Electrochemical Impedance Spectroscopy and its applications, Springer, London (2014).Barsoukov E. Macdonald J. R. , Impedance Spectroscopy. Theory, experiment and applications, John Wiley & Sons, New Jersey (2005).Choi, J.-H., Park, J.-S., & Moon, S.-H. (2002). Direct Measurement of Concentration Distribution within the Boundary Layer of an Ion-Exchange Membrane. Journal of Colloid and Interface Science, 251(2), 311-317. doi:10.1006/jcis.2002.8407Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 43(1-2), 87-107. doi:10.1016/s0013-4686(97)00238-7Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163Hirschorn, B., Tribollet, B., & Orazem, M. E. (2008). On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 48(3-4), 133-142. doi:10.1560/ijc.48.3-4.133Victoria, S. N., & Ramanathan, S. (2011). Effect of potential drifts and ac amplitude on the electrochemical impedance spectra. Electrochimica Acta, 56(5), 2606-2615. doi:10.1016/j.electacta.2010.12.007Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jesGiner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141Gode, P., Jaouen, F., Lindbergh, G., Lundblad, A., & Sundholm, G. (2003). Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochimica Acta, 48(28), 4175-4187. doi:10.1016/s0013-4686(03)00603-0Yuan, X., Sun, J. C., Wang, H., & Zhang, J. (2006). AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 161(2), 929-937. doi:10.1016/j.jpowsour.2006.07.020Fernández Pulido, Y., Blanco, C., Anseán, D., García, V. M., Ferrero, F., & Valledor, M. (2017). Determination of suitable parameters for battery analysis by Electrochemical Impedance Spectroscopy. Measurement, 106, 1-11. doi:10.1016/j.measurement.2017.04.022Fasmin, F., & Srinivasan, R. (2015). Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. Journal of Solid State Electrochemistry, 19(6), 1833-1847. doi:10.1007/s10008-015-2824-9Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4159. doi:10.1149/1.2048479Boukamp, B. A. (1995). A Linear Kronig-Kramers Transform Test for Immittance Data Validation. Journal of The Electrochemical Society, 142(6), 1885. doi:10.1149/1.2044210BOUKAMP, B., & ROSSMACDONALD, J. (1994). Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ionics, 74(1-2), 85-101. doi:10.1016/0167-2738(94)90440-5Orazem, M. E., & Tribollet, B. (2008). An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 53(25), 7360-7366. doi:10.1016/j.electacta.2007.10.075Shukla, P. K., Orazem, M. E., & Crisalle, O. D. (2004). Validation of the measurement model concept for error structure identification. Electrochimica Acta, 49(17-18), 2881-2889. doi:10.1016/j.electacta.2004.01.047Orazem, M. E. (2004). A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 572(2), 317-327. doi:10.1016/j.jelechem.2003.11.059Orazem, M. E., Shukla, P., & Membrino, M. A. (2002). Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 47(13-14), 2027-2034. doi:10.1016/s0013-4686(02)00065-8Agarwal, P., Orazem, M. E., & Garcia-Rubio, L. H. (1996). The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 41(7-8), 1017-1022. doi:10.1016/0013-4686(95)00433-5Orazem, M. E. (1996). Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of The Electrochemical Society, 143(3), 948. doi:10.1149/1.1836564Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4149. doi:10.1149/1.2048478Agarwal, P. (1992). Measurement Models for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 139(7), 1917. doi:10.1149/1.2069522Orazem, M. E., Esteban, J. M., & Moghissi, O. C. (1991). Practical Applications of the Kramers-Kronig Relations. CORROSION, 47(4), 248-259. doi:10.5006/1.3585252Urquidi-Macdonald, M., Real, S., & Macdonald, D. D. (1990). Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochimica Acta, 35(10), 1559-1566. doi:10.1016/0013-4686(90)80010-lHirschorn, B., & Orazem, M. E. (2009). On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of The Electrochemical Society, 156(10), C345. doi:10.1149/1.3190160Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131Lai, W. (2010). Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes. Electrochimica Acta, 55(19), 5511-5518. doi:10.1016/j.electacta.2010.04.016Montella C. Diard J. P. , Nonlinear Impedance of Tafelian Electrochemical Systems, Wolfram Demonstrations Project, 2014, http://demonstrations.wolfram. com/NonlinearImpedanceOfTafelianElectrochemicalSystems/.Montella, C. (2012). Combined effects of Tafel kinetics and Ohmic potential drop on the nonlinear responses of electrochemical systems to low-frequency sinusoidal perturbation of electrode potential – New approach using the Lambert W-function. Journal of Electroanalytical Chemistry, 672, 17-27. doi:10.1016/j.jelechem.2012.03.003Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Non-linear impedance for a two-step electrode reaction with an intermediate adsorbed species. Electrochimica Acta, 42(7), 1053-1072. doi:10.1016/s0013-4686(96)00206-xDiard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation from the polarization resistance due to non-linearity I - theoretical formulation. Journal of Electroanalytical Chemistry, 432(1-2), 27-39. doi:10.1016/s0022-0728(97)00213-1Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity II. Application to electrochemical reactions. Journal of Electroanalytical Chemistry, 432(1-2), 41-52. doi:10.1016/s0022-0728(97)00234-9Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity. III—Polarization resistance determination from non-linear impedance measurements. Journal of Electroanalytical Chemistry, 432(1-2), 53-62. doi:10.1016/s0022-0728(97)00233-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Impedance measurement errors due to non-linearities—I. Low frequency impedance measurements. Electrochimica Acta, 39(4), 539-546. doi:10.1016/0013-4686(94)80098-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Theoretical formulation of the odd harmonic test criterion for EIS measurements. Journal of Electroanalytical Chemistry, 377(1-2), 61-73. doi:10.1016/0022-0728(94)03624-1Smulko, J., & Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. doi:10.1016/s0022-0728(03)00106-2Darowicki, K. (1997). Linearization in impedance measurements. Electrochimica Acta, 42(12), 1781-1788. doi:10.1016/s0013-4686(96)00377-5Darowicki, K. (1995). The amplitude analysis of impedance spectra. Electrochimica Acta, 40(4), 439-445. doi:10.1016/0013-4686(94)00303-iDarowicki, K. (1995). Frequency dispersion of harmonic components of the current of an electrode process. Journal of Electroanalytical Chemistry, 394(1-2), 81-86. doi:10.1016/0022-0728(95)04065-vVan Gheem, E., Pintelon, R., Hubin, A., Schoukens, J., Verboven, P., Blajiev, O., & Vereecken, J. (2006). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 51(8-9), 1443-1452. doi:10.1016/j.electacta.2005.02.096Van Gheem, E., Pintelon, R., Vereecken, J., Schoukens, J., Hubin, A., Verboven, P., & Blajiev, O. (2004). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 49(26), 4753-4762. doi:10.1016/j.electacta.2004.05.039Pintelon, R., Louarroudi, E., & Lataire, J. (2015). Nonparametric time-variant frequency response function estimates using arbitrary excitations. Automatica, 51, 308-317. doi:10.1016/j.automatica.2014.10.088Pintelon, R., Louarroudi, E., & Lataire, J. (2013). Detecting and Quantifying the Nonlinear and Time-Variant Effects in FRF Measurements Using Periodic Excitations. IEEE Transactions on Instrumentation and Measurement, 62(12), 3361-3373. doi:10.1109/tim.2013.2267457Popkirov, G. S., & Schindler, R. N. (1995). Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta, 40(15), 2511-2517. doi:10.1016/0013-4686(95)00075-pPopkirov, G. S., & Schindler, R. N. (1993). Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Review of Scientific Instruments, 64(11), 3111-3115. doi:10.1063/1.1144316Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152On the definition of total harmonic distortion and its effect on measurement interpretation. (2005). IEEE Transactions on Power Delivery, 20(1), 526-528. doi:10.1109/tpwrd.2004.839744Mao, Q., & Krewer, U. (2013). Total harmonic distortion analysis of oxygen reduction reaction in proton exchange membrane fuel cells. Electrochimica Acta, 103, 188-198. doi:10.1016/j.electacta.2013.03.194Mao, Q., & Krewer, U. (2012). Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application. Electrochimica Acta, 68, 60-68. doi:10.1016/j.electacta.2012.02.018Mao, Q., Krewer, U., & Hanke-Rauschenbach, R. (2010). Total harmonic distortion analysis for direct methanol fuel cell anode. Electrochemistry Communications, 12(11), 1517-1519. doi:10.1016/j.elecom.2010.08.022Thomas, S., Lee, S. C., Sahu, A. K., & Park, S. (2014). Online health monitoring of a fuel cell using total harmonic distortion analysis. International Journal of Hydrogen Energy, 39(9), 4558-4565. doi:10.1016/j.ijhydene.2013.12.180Garcia-Antón J. Igual-Muñoz A. Guiñon J. L. Pérez-Herranz V. Herraiz-Cardona I. Ortega E. M. , Horizontal cell for electro-optical analysis of electrochemical processes, ES patent P-2000002526, October 2000.Herraiz-Cardona I. , Desarrollo de nuevos materiales de electrodo para la obtención de hidrógeno a partir de la electrolisis alcalina del agua, PhD Tesis, Valencia, Universitat Politècnica de València (2012).Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectrosc

    Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems

    Full text link
    Electrochemical Impedance Spectroscopy (EIS) is an electrochemical measurement technique that has been applied to a broad range of applications. Three conditions must be fulfilled in order to obtain valid EIS measurements: causality, linearity and stationarity. The non fulfilment of any of these conditions may lead to distorted and biased EIS spectra. Consequently, the verification of the four fundamental conditions is mandatory before accepting any results extracted from an EIS spectrum. In this work, a harmonic analysis based method for linearity assessment and noise quantification in EIS measurements is presented, and validated both from an experimental point of view and from a theoretical point of view, for Tafelian systems. It was shown that the presented method was able to quantitatively assess the nonlinearity of the system; and to quantify and characterize the noise. Moreover, the presented method is able to determine the threshold frequency of the system above which the system does not present significant nonlinear effects even for very large perturbation amplitudes.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta. 211:1076-1091. doi:10.1016/j.electacta.2016.06.133S1076109121

    Water reclamation and chemicals recovery from a novel cyanide-free copper plating bath using electrodialysis membrane process

    Full text link
    [EN] One of the industrial concerns is to change procedures into sustainable and cleaner processes. In electroplating, researches have been developed to replace toxic materials for safer alternatives. Cyanide salts are toxic compounds used as complexing agents in alkaline baths. This work focused in a cyanide-free copper alkaline bath developed for copper coating onto zinc alloys. Electrodialysis was evaluated to obtain a concentrated solution from a model rinsing water and simultaneously to treat the effluent for further reuse. Membrane properties after electrodialysis were analyzed, before and after cleaning procedures. Deposition tests were performed using electrolytes containing the recycled inputs and the coatings were analyzed. As results, a solution 5 to 6 times more concentrated than the initial one was obtained. The average demineralization was 90% and the percent extraction of ions was higher than 80%. Interactions between the organic acid and the exchange groups may affect membrane properties. Nevertheless, FTIR analyses and the applied cleaning procedures showed that bonds between phosphorus and quaternary amine may be reversible. Both cleaning procedures presented similar performance and partially restored the membrane properties. The concentrate could be added to the copper bath to compensate eventual drag-out losses without affecting the quality of the coatings.Authors would like to thank the Institute for Technological Research (IPT), the Institute for Technological Research Foundation (FIPT), to the Sao Paulo Research Foundation (Fapesp - processes 2012/51871-9, 2016/17527-0 and 2014/13351-9) and the National Council for Scientific and Technological Development.Scarazzato, T.; Panossian, Z.; Tenorio, J.; PĂ©rez-Herranz, V.; Espinosa, D. (2018). Water reclamation and chemicals recovery from a novel cyanide-free copper plating bath using electrodialysis membrane process. Desalination. 436:114-124. https://doi.org/10.1016/j.desal.2018.01.005S11412443

    Effect of pore generator on microstructure and resistivity of Sb2O3 and CuO doped SnO2 electrodes

    Full text link
    [EN] Sb(2)O(3)and CuO doped SnO(2)ceramic electrodes could be an alternative to the ones currently used ones in the electrooxidation process of water pollutants. The rise of electrode surface by introducing a porogen agent on the composition was analysed in order to increase the electrochemical active surface. For this reason, several substances were tested. Although the densification and total pore volume had similar values, the microstructures and the pore size distributions generated were strongly dependent on porogen nature. A total of five porogens were tested, but petroleum coke turned out to be the best option for these electrodes. It was found that the electrical resistivity depends on the nature of pore generator. Furthermore, its relation to the porosity can be modelled with Archie's or Pabst's equations.The authors are very grateful to the Ministerio de Economia y Competitividad (Projects: CTQ2015-65202-C2-1-R and CTQ2015-65202-C2-2-R) and to the European Regional Development Fund (FEDER), for their economic support.Sánchez-Rivera, M.; Gozalbo, A.; Pérez-Herranz, V.; Mestre, S. (2020). Effect of pore generator on microstructure and resistivity of Sb2O3 and CuO doped SnO2 electrodes. Journal of Porous Materials. 27(6):1801-1808. https://doi.org/10.1007/s10934-020-00959-0S18011808276C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340 (2006). https://doi.org/10.1039/B517632HC.A. Kent, J.J. Concepcion, C.J. Dares, D.A. Torelli, A.J. Rieth, A.S. Miller, P.G. Hoertz, T.J. Meyer, Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes. J. Am. Chem. Soc. 135, 8432–8435 (2013). https://doi.org/10.1021/ja400616aM.P. Miranda, R. Del Rio, M.A. Del Valle, M. Faundez, F. Armijo, Use of fluorine-doped tin oxide electrodes for lipoic acid determination in dietary supplements. J. Electroanal. Chem. 668, 1–6 (2012). https://doi.org/10.1016/j.jelechem.2011.12.022M.A.Q. Alfaro, S. Ferro, C.A. Martínez-Huitle, Y.M. Vong, Boron doped diamond electrode for the wastewater treatment. J. Braz. Chem. Soc. 17, 227–236 (2006). https://doi.org/10.1590/S0103-50532006000200003J. Mora-Gómez, M. García-Gabaldón, E. Ortega, M.-J. Sánchez-Rivera, S. Mestre, V. Pérez-Herranz, Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceram. Int. 44, 2216–2222 (2018). https://doi.org/10.1016/j.ceramint.2017.10.178C.J. Evans, Industrial uses of tin chemicals, Chem. Tin, Springer Netherlands, Dordrecht, 1998: pp. 442–479. https://doi.org/10.1007/978-94-011-4938-9_12J. Molera, T. Pradell, N. Salvadó, M. Vendrell-Saz, Evidence of tin oxide recrystallization in opacified lead glazes. J. Am. Ceram. Soc. 82, 2871–2875 (2004). https://doi.org/10.1111/j.1151-2916.1999.tb02170.xP.P. Tsai, I.-C. Chen, M.H. Tzeng, Tin oxide (SnOX) carbon monoxide sensor fabricated by thick-film methods. Sensors Actuators B 25, 537–539 (1995). https://doi.org/10.1016/0925-4005(95)85116-XF. Li, J. Xu, X. Yu, L. Chen, J. Zhu, Z. Yang, X. Xin, One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors Actuators B 165–169. http://www.sciencedirect.com/science/article/pii/S0925400501009479S. Zuca, M. Terzi, M. Zaharescu, K. Matiasovsky, Contribution to the study of SnO2-based ceramics. J. Mater. Sci. 26, 1673–1676 (1991). https://doi.org/10.1007/BF00544681M. BATZILL, U. DIEBOLD, The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005). https://doi.org/10.1016/j.progsurf.2005.09.002G. Monrós. El color de la cerámica: nuevos mecanismos en pigmentos para los nuevos procesados de la industria cerámica, n.d. https://books.google.es/books/about/El_Color_de_la_cerámica.html?id=yfIogcGvdqUC&redir_esc=y . Accessed 29 Aug 2018E.R. Leite, J.A. Cerri, E. Longo, J.A. Varela, C.A. Paskocima, Sintering of ultrafine undoped SnO2 powder. J. Eur. Ceram. Soc. 21, 669–675 (2001). https://doi.org/10.1016/S0955-2219(00)00250-8S. Mihaiu, O. Scarlat, G. Aldica, M. Zaharescu, SnO2 electroceramics with various additives. J. Eur. Ceram. Soc. 21, 1801–1804 (2001). https://doi.org/10.1016/S0955-2219(01)00119-4C.R. Foschini, L. Perazolli, J.A. Varela, Sintering of tin oxide using zinc oxide as a densification aid. J. Mater. Sci. 39, 5825–5830 (2004). https://doi.org/10.1023/B:JMSC.0000040095.03906.61M.S. Castro, C.M. Aldao, Characterization of SnO2-varistors with different additives. J. Eur. Ceram. Soc. 18, 2233–2239 (1998). https://doi.org/10.1016/S0955-2219(97)00130-1A.-M. Popescu, S. Mihaiu, S. Zuca, Microstructure and electrochemical behaviour of some SnO2-based inert electrodes in aluminium electrolysis. Zeitschrift Für Naturforsch. A 57, 71–75 (2002). https://doi.org/10.1515/zna-2002-1-210M.R. Sahar, M. Hasbullah, Properties of SnO2-based ceramics. 30, 5304–5305 (1995)D. Nisiro, G. Fabbri, G.C. Celotti, A. Bellosi, Influence of the additives and processing conditions on the characteristics of dense SnO2-based ceramics. J. Mater. Sci. 38, 2727–2742 (2003). https://doi.org/10.1023/A:1024459307992M.-J. Sánchez-Rivera, CuO improved (Sn,Sb)O2 ceramic anodes for electrochemical advanced oxidation processes. Int. J. Appl. Ceram. Technol. (2018)B. Das, B. Chakrabarty, P. Barkakati, Preparation and characterization of novel ceramic membranes for micro-filtration applications. Ceram. Int. 42, 14326–14333 (2016). https://doi.org/10.1016/j.ceramint.2016.06.125I. Hedfi, N. Hamdi, M.A. Rodriguez, E. Srasra, Development of a low cost micro-porous ceramic membrane from kaolin and Alumina, using the lignite as porogen agent. Ceram. Int. 42, 5089–5093 (2016). https://doi.org/10.1016/j.ceramint.2015.12.023M. García-Gabaldón, V. Pérez-Herranz, E. Sánchez, S. Mestre, Effect of porosity on the effective electrical conductivity of different ceramic membranes used as separators in eletrochemical reactors. J. Memb. Sci. 280, 536–544 (2006). https://doi.org/10.1016/j.memsci.2006.02.007J.-H. Kim, K.-H. Lee, Effect of PEG additive on membrane formation by phase inversion. J. Memb. Sci. 138, 153–163 (1998). https://doi.org/10.1016/S0376-7388(97)00224-XB.K. Nandi, R. Uppaluri, M.K. Purkait, Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Appl. Clay Sci. 42, 102–110 (2008). https://doi.org/10.1016/j.clay.2007.12.001F. Bouzerara, A. Harabi, S. Condom, Porous ceramic membranes prepared from kaolin. Desalin. Water Treat. 12, 415–419 (2009). https://doi.org/10.5004/dwt.2009.1051Q. Guibao, L. Tengfei, W. Jian, B. Chenguang, Preparation Titanium Foams with Uniform and Fine Pore Characteristics Through Powder Route Using Urea Particles as Space Holder (Springer, Cham, 2018), pp. 861–868. https://doi.org/10.1007/978-3-319-72526-0_82K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li, G. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources. 378, 579–588 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.081S. Vijayan, R. Narasimman, K. Prabhakaran, A urea crystal templating method for the preparation of porous alumina ceramics with the aligned pores. J. Eur. Ceram. Soc. 33, 1929–1934 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.02.031R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)G.E. Archie, The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME. 146, 54–62 (1942)P. WAGNER, J.A. O’ROURKE, P.E. ARMSTRONG, Porosity effects in polycrystalline graphite. J. Am. Ceram. Soc. 55, 214–219 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11262.xH.El Khal, A. Cordier, N. Batis, E. Siebert, S. Georges, M.C. Steil, Effect of porosity on the electrical conductivity of LAMOX materials. Solid State Ionics. 304, 75–84 (2017). https://doi.org/10.1016/j.ssi.2017.03.028S. Tian-Ming, D. Li-Min, W. Chen, G. Wen-Li, W. Li, T.-X. Liang, New carbon materials Effect of porosity on the electrical resistivity of carbon materials. New Carbon Mater 28, 349–354 (2013). https://doi.org/10.1016/S1872-5805(13)60087-6W. Pabst, E. Gregorová, Conductivity of porous materials with spheroidal pores. J. Eur. Ceram. Soc. 34, 2757–2766 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.04

    Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell

    Full text link
    [EN] he internal resistance of a PEM fuel cell depends on the operation conditions and on the current delivered by the cell. This work's goal is to obtain a semiempirical model able to reproduce the effect of the operation current on the internal resistance of an individual cell of a commercial PEM fuel cell stack; and to perform a statistical analysis in order to study the effect of the operation temperature and the inlet humidities on the parameters of the model. First, the internal resistance of the individual fuel cell operating in different operation conditions was experimentally measured for different DC currents, using the high frequency intercept of the impedance spectra. Then, a semiempirical model based on Springer and co-workersÂż model was proposed. This model is able to successfully reproduce the experimental trends. Subsequently, the curves of resistance versus DC current obtained for different operation conditions were fitted to the semiempirical model, and an analysis of variance (ANOVA) was performed in order to determine which factors have a statistically significant effect on each model parameter. Finally, a response surface method was applied in order to obtain a regression model.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Valid grant (Ref:. ACIF-2013-268)Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources. 381:84-93. https://doi.org/10.1016/j.jpowsour.2018.01.093S849338

    Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements

    Full text link
    [EN] The impedance concept is defined by Ohm's generalized law. Ohm's law requires the fulfilment of 3 conditions in order to be valid: causality, linearity and stability. In general, electrochemical systems are highly nonlinear systems; and therefore, in order to achieve linearity low amplitude perturbations have to be used during EIS measurements. However, small amplitude perturbations lead to low signal-to-noise ratios. Consequently, the quality of an EIS measurement is determined by a trade-off: the perturbation amplitude should be big enough in order to obtain a good signal-to-noise ratio; and at the same time, it should be small enough in order to avoid significant nonlinear effects. The optimum perturbation amplitude corresponds with the maximum perturbation amplitude that ensures a pseudo linear response of the system. In this work, a method for experimentally determining the optimum perturbation amplitude for performing EIS measurements of a given system is presented. The presented method is based on the harmonic analysis of the output signals; and in this work, it was applied to a highly nonlinear system: the cathodic electrode of an alkaline water electrolyser. The presented method allows optimising the perturbation amplitude in both, constant amplitude and frequency dependant amplitude strategies. (c) 2017 The Electrochemical Society. All rights reserved.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society. 164(13):H918-H924. https://doi.org/10.1149/2.1451713jesSH918H92416413Macdonald, D. D. (2006). Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1376-1388. doi:10.1016/j.electacta.2005.02.107Orazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, New Jersey (2008).Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135Cascos, V., Aguadero, A., Harrington, G., Fernández-Díaz, M. T., & Alonso, J. A. (2017). Design of Sr0.7R0.3CoO3-δ(R = Tb and Er) Perovskites Performing as Cathode Materials in Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(10), F3019-F3027. doi:10.1149/2.0031710jesPang, S., Wang, W., Su, Y., Shen, X., Wang, Y., Xu, K., & Chen, C. (2017). Synergistic Effect of A-Site Cation Ordered-Disordered Perovskite as a Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(7), F775-F780. doi:10.1149/2.0701707jesKiebach, R., Zielke, P., Veltzé, S., Ovtar, S., Xu, Y., Simonsen, S. B., … Küngas, R. (2017). On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes. Journal of The Electrochemical Society, 164(7), F748-F758. doi:10.1149/2.0361707jesChen, J., Liu, Q., Wang, B., Li, F., Jiang, H., Liu, K., … Wang, D. (2017). Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries. Journal of The Electrochemical Society, 164(7), A1526-A1533. doi:10.1149/2.0971707jesHwang, C., Lee, K., Um, H.-D., Lee, Y., Seo, K., & Song, H.-K. (2017). Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries. Journal of The Electrochemical Society, 164(7), A1564-A1568. doi:10.1149/2.1241707jesZhang, Y., Chen, F., Yang, D., Zha, W., Li, J., Shen, Q., … Zhang, L. (2017). High Capacity All-Solid-State Lithium Battery Using Cathodes with Three-Dimensional Li+Conductive Network. Journal of The Electrochemical Society, 164(7), A1695-A1702. doi:10.1149/2.1501707jesMalifarge, S., Delobel, B., & Delacourt, C. (2017). Determination of Tortuosity Using Impedance Spectra Analysis of Symmetric Cell. Journal of The Electrochemical Society, 164(11), E3329-E3334. doi:10.1149/2.0331711jesPaulraj, A. R., Kiros, Y., Skårman, B., & Vidarsson, H. (2017). Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries. Journal of The Electrochemical Society, 164(7), A1665-A1672. doi:10.1149/2.1431707jesStein, M., Mistry, A., & Mukherjee, P. P. (2017). Mechanistic Understanding of the Role of Evaporation in Electrode Processing. Journal of The Electrochemical Society, 164(7), A1616-A1627. doi:10.1149/2.1271707jesMurbach, M. D., & Schwartz, D. T. (2017). Extending Newman’s Pseudo-Two-Dimensional Lithium-Ion Battery Impedance Simulation Approach to Include the Nonlinear Harmonic Response. Journal of The Electrochemical Society, 164(11), E3311-E3320. doi:10.1149/2.0301711jesGiner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137Katić, J., Metikoš-Huković, M., Šarić, I., & Petravić, M. (2017). Electronic Structure and Redox Behavior of Tin Sulfide Films Potentiostatically Formed on Tin. Journal of The Electrochemical Society, 164(7), C383-C389. doi:10.1149/2.0371707jesYang, J., Yang, Y., Balaskas, A., & Curioni, M. (2017). Development of a Chromium-Free Post-Anodizing Treatment Based on 2-Mercaptobenzothiazole for Corrosion Protection of AA2024T3. Journal of The Electrochemical Society, 164(7), C376-C382. doi:10.1149/2.1191707jesTakabatake, Y., Kitagawa, Y., Nakanishi, T., Hasegawa, Y., & Fushimi, K. (2017). Grain Dependency of a Passive Film Formed on Polycrystalline Iron in pH 8.4 Borate Solution. Journal of The Electrochemical Society, 164(7), C349-C355. doi:10.1149/2.1011707jesQi, J., Gao, L., Li, Y., Wang, Z., Thompson, G. E., & Skeldon, P. (2017). An Optimized Trivalent Chromium Conversion Coating Process for AA2024-T351 Alloy. Journal of The Electrochemical Society, 164(7), C390-C395. doi:10.1149/2.1371707jesZhang, Q., Kercher, A. K., Veith, G. M., Sarbada, V., Brady, A. B., Li, J., … Marschilok, A. C. (2017). Lithium Vanadium Oxide (Li1.1V3O8) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology and Interfacial Structure on Resulting Electrochemistry. Journal of The Electrochemical Society, 164(7), A1503-A1513. doi:10.1149/2.0881707jesMoya, A. A. (2016). Electrochemical Impedance of Ion-Exchange Membranes with Interfacial Charge Transfer Resistances. The Journal of Physical Chemistry C, 120(12), 6543-6552. doi:10.1021/acs.jpcc.5b12087García-Osorio, D. A., Jaimes, R., Vazquez-Arenas, J., Lara, R. H., & Alvarez-Ramirez, J. (2017). The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions:•OH Formation. Journal of The Electrochemical Society, 164(11), E3321-E3328. doi:10.1149/2.0321711jesWei, Q., Yan, X., Kang, Z., Zhang, Z., Cao, S., Liu, Y., & Zhang, Y. (2017). Carbon Quantum Dots Decorated C3N4/TiO2Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. Journal of The Electrochemical Society, 164(7), H515-H520. doi:10.1149/2.1281707jesMachado, S., Calaça, G. N., da Silva, J. P., de Araujo, M. P., Boeré, R. T., Pessôa, C. A., & Wohnrath, K. (2017). Electrochemical Characterization of a Carbon Ceramic Electrode Modified with a Ru(II) Arene Complex and Its Application as Voltammetric Sensor for Paracetamol. Journal of The Electrochemical Society, 164(6), B314-B320. doi:10.1149/2.0191707jesBalasubramanian, P., Thirumalraj, B., Chen, S.-M., & Barathi, P. (2017). Electrochemical Determination of Isoniazid Using Gallic Acid Supported Reduced Graphene Oxide. Journal of The Electrochemical Society, 164(7), H503-H508. doi:10.1149/2.1021707jesJiang, J. (2017). High Temperature Monolithic Biochar Supercapacitor Using Ionic Liquid Electrolyte. Journal of The Electrochemical Society, 164(8), H5043-H5048. doi:10.1149/2.0211708jesWang, K.-Y., Chiu, Y.-K., & Cheng, H.-C. (2017). Electrochemical Capacitors of Horizontally Aligned Carbon Nanotube Electrodes with Oxygen Plasma Treatment. Journal of The Electrochemical Society, 164(7), A1587-A1594. doi:10.1149/2.1251707jesChang, C., Yang, X., Xiang, S., Lin, X., Que, H., & Li, M. (2017). Nitrogen and Sulfur Co-Doped Glucose-Based Porous Carbon Materials with Excellent Electrochemical Performance for Supercapacitors. Journal of The Electrochemical Society, 164(7), A1601-A1607. doi:10.1149/2.1341707jesLasia A. , Electrochemical Impedance Spectrscopy and its applications, Springer, London (2014).Gray M. G. Goodman J. W. , Electrochemical Impedance Spectrscopy and its applications, Springer, New York (1995).Barsoukov E. Macdonald J. R. , Impedance Spectroscopy. Theory, experiment and applications, John Wiley & Sons, New Jersey (2005).Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 43(1-2), 87-107. doi:10.1016/s0013-4686(97)00238-7Schönleber, M., Klotz, D., & Ivers-Tiffée, E. (2014). A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests. Electrochimica Acta, 131, 20-27. doi:10.1016/j.electacta.2014.01.034Garland, J. E., Pettit, C. M., & Roy, D. (2004). Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra. Electrochimica Acta, 49(16), 2623-2635. doi:10.1016/j.electacta.2003.12.051Orazem, M. E., & Tribollet, B. (2008). An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 53(25), 7360-7366. doi:10.1016/j.electacta.2007.10.075Urquidi-Macdonald, M., Real, S., & Macdonald, D. D. (1990). Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochimica Acta, 35(10), 1559-1566. doi:10.1016/0013-4686(90)80010-lDarowicki, K. (1995). Frequency dispersion of harmonic components of the current of an electrode process. Journal of Electroanalytical Chemistry, 394(1-2), 81-86. doi:10.1016/0022-0728(95)04065-vDarowicki, K. (1995). The amplitude analysis of impedance spectra. Electrochimica Acta, 40(4), 439-445. doi:10.1016/0013-4686(94)00303-iDarowicki, K. (1997). Linearization in impedance measurements. Electrochimica Acta, 42(12), 1781-1788. doi:10.1016/s0013-4686(96)00377-5Smulko, J., & Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. doi:10.1016/s0022-0728(03)00106-2Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Impedance measurement errors due to non-linearities—I. Low frequency impedance measurements. Electrochimica Acta, 39(4), 539-546. doi:10.1016/0013-4686(94)80098-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Theoretical formulation of the odd harmonic test criterion for EIS measurements. Journal of Electroanalytical Chemistry, 377(1-2), 61-73. doi:10.1016/0022-0728(94)03624-1Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation from the polarization resistance due to non-linearity I - theoretical formulation. Journal of Electroanalytical Chemistry, 432(1-2), 27-39. doi:10.1016/s0022-0728(97)00213-1Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity II. Application to electrochemical reactions. Journal of Electroanalytical Chemistry, 432(1-2), 41-52. doi:10.1016/s0022-0728(97)00234-9Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity. III—Polarization resistance determination from non-linear impedance measurements. Journal of Electroanalytical Chemistry, 432(1-2), 53-62. doi:10.1016/s0022-0728(97)00233-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Non-linear impedance for a two-step electrode reaction with an intermediate adsorbed species. Electrochimica Acta, 42(7), 1053-1072. doi:10.1016/s0013-4686(96)00206-xVan Gheem, E., Pintelon, R., Vereecken, J., Schoukens, J., Hubin, A., Verboven, P., & Blajiev, O. (2004). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 49(26), 4753-4762. doi:10.1016/j.electacta.2004.05.039Van Gheem, E., Pintelon, R., Hubin, A., Schoukens, J., Verboven, P., Blajiev, O., & Vereecken, J. (2006). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 51(8-9), 1443-1452. doi:10.1016/j.electacta.2005.02.096Popkirov, G. S., & Schindler, R. N. (1995). Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta, 40(15), 2511-2517. doi:10.1016/0013-4686(95)00075-pKiel, M., Bohlen, O., & Sauer, D. U. (2008). Harmonic analysis for identification of nonlinearities in impedance spectroscopy. Electrochimica Acta, 53(25), 7367-7374. doi:10.1016/j.electacta.2008.01.089Lai, W. (2010). Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes. Electrochimica Acta, 55(19), 5511-5518. doi:10.1016/j.electacta.2010.04.016Montella C. Diard J. P. , Nonlinear Impedance of Tafelian Electrochemical Systems, Wolfram Demonstrations Project, 2014, http://demonstrations.wolfram.com/NonlinearImpedanceOfTafelianElectrochemicalSystems/.Montella, C. (2012). Combined effects of Tafel kinetics and Ohmic potential drop on the nonlinear responses of electrochemical systems to low-frequency sinusoidal perturbation of electrode potential – New approach using the Lambert W-function. Journal of Electroanalytical Chemistry, 672, 17-27. doi:10.1016/j.jelechem.2012.03.003Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157Kaisare, N. S., Ramani, V., Pushpavanam, K., & Ramanathan, S. (2011). An analysis of drifts and nonlinearities in electrochemical impedance spectra. Electrochimica Acta, 56(22), 7467-7475. doi:10.1016/j.electacta.2011.06.112Hirschorn, B., Tribollet, B., & Orazem, M. E. (2008). On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 48(3-4), 133-142. doi:10.1560/ijc.48.3-4.133Victoria, S. N., & Ramanathan, S. (2011). Effect of potential drifts and ac amplitude on the electrochemical impedance spectra. Electrochimica Acta, 56(5), 2606-2615. doi:10.1016/j.electacta.2010.12.007Hernandez-Jaimes, C., Vazquez-Arenas, J., Vernon-Carter, J., & Alvarez-Ramirez, J. (2015). A nonlinear Cole–Cole model for large-amplitude electrochemical impedance spectroscopy. Chemical Engineering Science, 137, 1-8. doi:10.1016/j.ces.2015.06.015Yuan X. Z. , Electrochemical impedance spectroscopy in PEM fuel cells. Fundamentals and applications, Springer, London (2010).Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141Fasmin, F., & Srinivasan, R. (2015). Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. Journal of Solid State Electrochemistry, 19(6), 1833-1847. doi:10.1007/s10008-015-2824-9Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4159. doi:10.1149/1.2048479BOUKAMP, B., & ROSSMACDONALD, J. (1994). Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ionics, 74(1-2), 85-101. doi:10.1016/0167-2738(94)90440-5Boukamp, B. A. (1995). A Linear Kronig-Kramers Transform Test for Immittance Data Validation. Journal of The Electrochemical Society, 142(6), 1885. doi:10.1149/1.2044210Agarwal, P. (1992). Measurement Models for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 139(7), 1917. doi:10.1149/1.2069522Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4149. doi:10.1149/1.2048478Agarwal, P., Orazem, M. E., & Garcia-Rubio, L. H. (1996). The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 41(7-8), 1017-1022. doi:10.1016/0013-4686(95)00433-5Orazem, M. E., Esteban, J. M., & Moghissi, O. C. (1991). Practical Applications of the Kramers-Kronig Relations. CORROSION, 47(4), 248-259. doi:10.5006/1.3585252Orazem, M. E. (1996). Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of The Electrochemical Society, 143(3), 948. doi:10.1149/1.1836564Orazem, M. E., Shukla, P., & Membrino, M. A. (2002). Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 47(13-14), 2027-2034. doi:10.1016/s0013-4686(02)00065-8Orazem, M. E. (2004). A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 572(2), 317-327. doi:10.1016/j.jelechem.2003.11.059Shukla, P. K., Orazem, M. E., & Crisalle, O. D. (2004). Validation of the measurement model concept for error structure identification. Electrochimica Acta, 49(17-18), 2881-2889. doi:10.1016/j.electacta.2004.01.047Hirschorn, B., & Orazem, M. E. (2009). On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of The Electrochemical Society, 156(10), C345. doi:10.1149/1.3190160Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131Popkirov, G. S., & Schindler, R. N. (1993). Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Review of Scientific Instruments, 64(11), 3111-3115. doi:10.1063/1.1144316Pintelon, R., Louarroudi, E., & Lataire, J. (2013). Detecting and Quantifying the Nonlinear and Time-Variant Effects in FRF Measurements Using Periodic Excitations. IEEE Transactions on Instrumentation and Measurement, 62(12), 3361-3373. doi:10.1109/tim.2013.2267457Pintelon, R., Louarroudi, E., & Lataire, J. (2015). Nonparametric time-variant frequency response function estimates using arbitrary excitations. Automatica, 51, 308-317. doi:10.1016/j.automatica.2014.10.088Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133Kay, S. M., & Marple, S. L. (1981). Spectrum analysis—A modern perspective. Proceedings of the IEEE, 69(11), 1380-1419. doi:10.1109/proc.1981.12184Yuan, X., Sun, J. C., Blanco, M., Wang, H., Zhang, J., & Wilkinson, D. P. (2006). AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 161(2), 920-928. doi:10.1016/j.jpowsour.2006.05.003Herraiz-Cardona, I., Ortega, E., Vázquez-Gómez, L., & Pérez-Herranz, V. (2011). Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. International Journal of Hydrogen Energy, 36(18), 11578-11587. doi:10.1016/j.ijhydene.2011.06.067Herraiz-Cardona, I., Ortega, E., & Pérez-Herranz, V. (2011). Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta, 56(3), 1308-1315. doi:10.1016/j.electacta.2010.10.093Herraiz-Cardona, I., Ortega, E., Antón, J. G., & Pérez-Herranz, V. (2011). Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. International Journal of Hydrogen Energy, 36(16), 9428-9438. doi:10.1016/j.ijhydene.2011.05.047Herraiz-Cardona I. , Desarrollo de nuevos materiales de electrodo para la obtención de hidrógeno a partir de la electrolisis alcalina del agua, PhD Tesis, Universitat Politècnica de València, Valencia, 2012.Garcia-Antón J. Horizontal cell for electro-optical analysis of electrochemical processes, ES patent P-2000002526, October 2000.Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.10

    Trade-off between operating time and energy consumption in pulsed electric field electrodialysis: A comprehensive simulation study

    Full text link
    [EN] Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.The authors acknowledge the support of the Ibero-American CYTED network 318RT0551.MartĂ­ Calatayud, MC.; Sancho-Cirer Poczatek, M.; PĂ©rez-Herranz, V. (2021). Trade-off between operating time and energy consumption in pulsed electric field electrodialysis: A comprehensive simulation study. Membranes. 11(1):1-15. https://doi.org/10.3390/membranes11010043S11511
    • …
    corecore