89 research outputs found

    Physicochemical Properties and Pollen Profile of Oak Honeydew and Evergreen Oak Honeydew Honeys from Spain: A Comparative Study

    Get PDF
    This work investigates the similarities and differences of oak honeydew (Quercus pyrenaica Willd.) and evergreen honeydew (Quercus ilex L.) honey produced in Spain. For this purpose, the physicochemical characteristics of 17 samples from oak honeydew and 11 samples from evergreen honeydew collected in different geographical regions were analyzed. All the samples accomplished European Union requirements for honey consumption. Both honey types had amber dark color; however, the evergreen oak honey was clearer than oak honey, having higher mean values in a* and b* coordinates of CIELab scale. In general, both honey types exhibited high electrical conductivity, a moderate value of pH, medium to low water content, and high diastase activity. The reducing sugar content was significantly lower and maltose content was significantly higher in evergreen honeydew. In addition, total phenols and total flavonoid contents, the antioxidant activity and the melissopalynological analysis was performed. The oak honeydew honey had a higher abundance of Castanea, Rubus and Erica pollen grains, while the evergreen oak honeydew honey had a higher abundance of Lavandula, Olea europaea or Anthyllis cytisoides. A multivariate analysis using the most representative pollen types and physicochemical components facilitated the differentiation of the honey samples, thus this information can be useful for the honey characterization

    Factors influencing the airborne sporangia concentration of Phytophthora infestans and its relationship with potato disease severity

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGForecasting systems are widely used to predict the application of fungicides for managing late blight. However, airborne inoculum has rarely been included in these forecasting systems. Monitoring the sporangia in crop environments may offer an opportunity to improve late blight forecast systems by integrating pathogen pressure. Hence, this experiment aiming to analyze relationships between weather based risk systems and sporangia levels in the atmosphere of potato crops. The experiments were conducted during two growing seasons in a potato field. During the study, the concentration of Phytophthora infestans in the air, the weather conditions, the phenology of cultivars and r-AUPDC during the crop cycle were recorded. The weather-based risk of late blight was estimated using infection pressure (IP) and the daily risk value (DRV) based on hourly relative humidity (RH) and temperature (T). The effect of weather parameters on sporangia levels was analyzed. IP and DRV showed a strong positive correlation with sporangia concentration, standing out the pronounced effect of RH on the sporangia levels. Analysis of the hourly sporangia concentration within a day showed an increase in the sporangia concentration from 9 h to 18 h. This increase in sporangia was linked to an increase in T, spore release, and a decrease in RH. Our results identified a T of 10 ◦C and RH of 80% as the minimum threshold for significant sporangia concentration in the air. However, maximum sporangia level was found in the air at 88% (average relative humidity) and 17 ◦C (average temperature). Finally, the effect of weekly P. infestans sporangia was observed on cultivars with different susceptibility to late blight.Ministerio de Educación, Cultura y Deporte | Ref. FPU 17/0026

    Multivariate statistical approach for the discrimination of honey samples from Galicia (NW Spain) using physicochemical and pollen parameters

    Get PDF
    Raw honey is a food with a close relation to the territory in which it is produced because of factors such as soil conditions, weather patterns, and plant communities living in the area together. Furthermore, beekeeping management affects the properties of honey. Protected Geographical Indication Miel de Galicia protects the honey produced in Galicia (Northwest Spain). Various types of honeys (362 samples) from this geographical area were analyzed using chemometric techniques. Principal component analysis was favorable to analyzing the physicochemical and pollen variables with the greatest weight in the differentiation of honey. The linear discriminant analysis correctly classified 89.8% of the samples according to the botanical origin using main pollen spectra and physicochemical attributes (moisture, pH, electrical conductivity, diastase content, phenols, flavonoids, and color). Regarding unifloral honey, blackberry, eucalyptus, and heather honeys were correctly grouped, while five chestnut honeys and fourteen samples of honeydew honeys were misclassified. The chestnut and honeydew honeys have similar physicochemical properties and frequently similar pollen spectra profiles complicating the differentiation. Experimental evidence suggests the potential of multivariate statistics in the characterization of honey of the same geographical origin. Therefore, the classification results were good, with electrical conductivity, total phenol content, total flavonoid content and dominant pollens Eucalyptus, Erica, Rubus and Castanea sativa as the variables of higher importance in the differentiation of botanical origin of honeys.Xunta de Galicia | Ref. 2014/2020-FEADER 2018/054

    Importance of meteorological parameters and airborne conidia to predict risk of alternaria on a potato crop ambient using machine learning algorithms

    Get PDF
    Secondary infections of early blight during potato crop season are conditioned by aerial inoculum. However, although aerobiological studies have focused on understanding the key factors that influence the spore concentration in the air, less work has been carried out to predict when critical concentrations of conidia occur. Therefore, the goals of this study were to understand the key weather variables that affect the hourly and daily conidia dispersal of Alternaria solani and A. alternata in a potato field, and to use these weather factors in different machine learning (ML) algorithms to predict the daily conidia levels. This study showed that conidia per hour in a day is influenced by the weather conditions that characterize the hour, but not the hour of the day. Specifically, the relative humidity and solar radiation were the most relevant weather parameters influencing the conidia concentration in the air and both in a linear model explained 98% of the variation of this concentration per hour. Moreover, the dew point temperature three days before was the weather variable with the strongest effect on conidia per day. An improved prediction of Alternaria conidia level was achieved via ML algorithms when the conidia of previous days is considered in the analysis. Among the ML algorithms applied, the CART model with an accuracy of 86% were the best to predict daily conidia level.Ministerio de Educación, Cultura y Deportes | Ref. FPU 17/0026

    Monocarboxylate transporters in the brain and in cancer.

    Get PDF
    Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou

    Contribution to the chromatic characterization of unifloral honeys from Galicia (NW Spain)

    Get PDF
    Honey color and other physicochemical characteristics depend mainly on the botanical and geographical origin. The study of these properties could make easier a correct classification of unifloral honey. This work determined the palynological characteristics and some physicochemical properties such as pH, electrical conductivity, and color (Pfund scale and the CIELab coordinates), as well as the total content of the bioactive compounds phenols and flavonoids of ninety-three honey samples. Samples were classified as chestnut, blackberry, heather, eucalyptus, and honeydew honey. The study showed a close relationship between the physicochemical variables and the botanical origin. The five types of honey presented different physicochemical properties among them. A principal component analysis showed that Hue, lightness, b, and Chroma variables were important for the honey types classification, followed by Erica pollen, pH, Cytisus, and Castanea variables. A forward stepwise regression analysis was performed introducing as dependent variables the color (mm Pfund) and the Chroma and the Hue variables. The regression models obtained explained 86%, 74%, and 86% of the variance of the data, respectively. The combination of the chromatic and physicochemical and pollen variables through the use of multivariable methods was optimal to characterize and group the honey samples studied.Xunta de Galicia | Ref. FEADER 2018/054

    Rapid estimation of potato quality parameters by a portable near-infrared spectroscopy device

    Get PDF
    The aim of the present work was to determine the main quality parameters on tuber potato using a portable near-infrared spectroscopy device (MicroNIR). Potato tubers protected by the Protected Geographical Indication (PGI “Patata de Galicia”, Spain) were analyzed both using chemical methods of reference and also using the NIR methodology for the determination of important parameters for tuber commercialization, such as dry matter and reducing sugars. MicroNIR technology allows for the attainment/estimation of dry matter and reducing sugars in the warehouses by directly measuring the tubers without a chemical treatment and destruction of samples. The principal component analysis and modified partial least squares regression method were used to develop the NIR calibration model. The best determination coefficients obtained for dry matter and reducing sugars were of 0.72 and 0.55, respectively, and with acceptable standard errors of cross-validation. Near-infrared spectroscopy was established as an effective tool to obtain prediction equations of these potato quality parameters. At the same time, the efficiency of portable devices for taking instantaneous measurements of crucial quality parameters is useful for potato processors.Xunta de Galicia | Ref. FEADER 2017/045BMinisterio de Educación, Cultura y Deporte | Ref. FPU 17/0026

    Changes in the morphological characteristics of potato plants attributed to seasonal variability

    Get PDF
    The development of a potato crop differs according to the environmental conditions and growing season of an area. Periods of high temperatures and drought have been frequent in recent years, and this has affected crops worldwide. The effect of meteorological factors on the plant morphology of potato cultivars growing in A Limia was analyzed for three consecutive years. The crop cycle with the highest temperatures and least accumulated rainfall (2016) showed plants with a higher number of leaflets, which were shorter in length. The crop cycle (2014) with a lower temperature and more rainfall had the tallest plants, the highest degree of flowering, fewer pairs of leaflets and the highest length of the floral peduncle. Kennebec and Fontane were the varieties that showed the least variability in morphological characteristics during the seasons analyzed. Considering the meteorological and morphological data, a principal component analysis was carried out, which explained 80.1% of the variance of the data. Spearman rank correlations showed higher significant coefficients between the temperature and foliar characteristics. The leaf size of plants was estimated using a multiple linear regression analysis, which included the mean temperature, explaining 64% of the variability of the data.Xunta de Galicia | Ref. 2014/2020-FEADE

    Describing the pollen content in the gastrointestinal tract of Vespa velutina larvae

    Get PDF
    Vespa velutina is an invasive species that exhibits flexible social behavior, which may have contributed to its introduction in several European countries. It is important to understand its behavior in order to combat the effects of its introduction in different areas. This implies knowing the resources that it uses during its biological cycle. Hornets require protein resources taken from insects and organic matter as well as carbohydrates as an energy source to fly and also to forage for food and nest-building materials. The gastrointestinal tract of adults and larvae contains a wide variety of pollen types. The identification of this pollen in larvae collected from nests could offer information about the plant species that V. velutina visits as a foraging place. The main objective of this research was to study the pollen content in the gastrointestinal tract of larvae. Patterns of pollen content and pollen diversity were established according to the nest type, altitude, season, and location in the nest comb. The abundance of pollen types such as Eucalyptus, Castanea, Foeniculum vulgare, Hedera helix, Taraxacum officinale, Echium, or Cytisus pollen type stands out in many of the samples.Simple Summary: The yellow-legged hornet is an invasive species from southeast Asia that has turned the European beekeeping sector upside down. The spread of this species has been advancing in recent years, and today, several European countries are threatened by Vespa velutina. The need to study its behavior is urgent given the increasingly evident economic and environmental impacts. In this regard, there is little information about the feeding habits and the resources it uses during the life cycle. Like other Hymenoptera, hornets require carbohydrates and proteins as their primary nutrients. Sugary secretions such as floral nectar, honeydew, or fruit juices are the main sources of carbohydrates but the protein intake is provided by the consumption of a diverse diet of insects such as the honey bee. There is scarce information on the presence of pollen grains in the gastrointestinal content of larvae other than secondary contamination from hunting. This content could represent the surrounding flora of its habitat that is used as a resource. Therefore, the objective of this study was to describe the main pollen types present in the gastrointestinal system of larvae taken from V. velutina nests.Fundación Centro de Estudos Eurorrexionais Galicia - Norte de Portugal | Ref. EAPA_800/2018-Atlantic-POSitiveXunta de Galicia | Ref. ED481D-2022-02

    A clinical method for mapping and quantifying blood stasis in the left ventricle

    Get PDF
    In patients at risk of intraventrcular thrombosis, the benefits of chronic anticoagulation therapy need to be balanced with the pro-hemorrhagic effects of therapy. Blood stasis in the cardiac chambers is a recognized risk factor for intracardiac thrombosis and potential cardiogenic embolic events. In this work, we present a novel flow image-based method to assess the location and extent of intraventricular stasis regions inside the left ventricle (LV) by digital processing flow-velocity images obtained either by phase-contrast magnetic resonance (PCMR) or 2D color-Doppler velocimetry (echo-CDV). This approach is based on quantifying the distribution of the blood Residence Time (TR) from time-resolved blood velocity fields in the LV. We tested the new method in illustrative examples of normal hearts, patients with dilated cardiomyopathy and one patient before and after the implantation of a left ventricular assist device (LVAD). The method allowed us to assess in-vivo the location and extent of the stasis regions in the LV. Original metrics were developed to integrate flow properties into simple scalars suitable for a robust and personalized assessment of the risk of thrombosis. From a clinical perspective, this work introduces the new paradigm that quantitative flow dynamics can provide the basis to obtain subclinical markers of intraventricular thrombosis risk. The early prediction of LV blood stasis may result in decrease strokes by appropriate use of anticoagulant therapy for the purpose of primary and secondary prevention. It may also have a significant impact on LVAD device design and operation set-up
    corecore