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Abstract: Secondary infections of early blight during potato crop season are conditioned by aerial
inoculum. However, although aerobiological studies have focused on understanding the key factors
that influence the spore concentration in the air, less work has been carried out to predict when
critical concentrations of conidia occur. Therefore, the goals of this study were to understand the key
weather variables that affect the hourly and daily conidia dispersal of Alternaria solani and A. alternata
in a potato field, and to use these weather factors in different machine learning (ML) algorithms
to predict the daily conidia levels. This study showed that conidia per hour in a day is influenced
by the weather conditions that characterize the hour, but not the hour of the day. Specifically, the
relative humidity and solar radiation were the most relevant weather parameters influencing the
conidia concentration in the air and both in a linear model explained 98% of the variation of this
concentration per hour. Moreover, the dew point temperature three days before was the weather
variable with the strongest effect on conidia per day. An improved prediction of Alternaria conidia
level was achieved via ML algorithms when the conidia of previous days is considered in the analysis.
Among the ML algorithms applied, the CART model with an accuracy of 86% were the best to predict
daily conidia level.

Keywords: aerobiology; Solanum tuberosum; early blight; Alternaria spp.; weather factors; machine
learning; k-nearest neighbor; random forest; decision trees

1. Introduction

Early blight caused by Alternaria solani (Soraeur) and A. alternata (Fr.) Keissl is an
important disease for potatoes production globally. Driven by the rapidly changing climate,
the disease’s intensity has increased in several areas recently. Consequently, massive
yield losses are happening globally [1,2]. Generally, growers spray chemical fungicides
routinely to achieve effective control of the disease. To regulate the number of sprayings
and minimize problems, such as contamination of the environment and fungicide resistance,
there is the need to regulate the application of fungicides via decision support systems
(DSS) [1-6].

The resident inoculum in the field from previous cropping seasons plays a vital role in
the onset of early blight [3,7], but the subsequent development of the epidemic in the field
is conditioned by aerial inoculum and weather conditions. Traditional DSS models do not
explicitly predict conidia concentration in the air or the presence of resident inoculum in the
field from previous cropping seasons or neighbor potato crops. However, aerobiological
studies, which study aerial biological elements and the factors influencing them, can be
useful to inform us about A. solani and A. alternata conidia levels in the air and, therefore,
for understanding the airborne conidia dynamics. Previous aerobiological studies on
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Alternaria spp. have focused on seasonal conidia variation in urban environments [8] or
rural environments [9,10], whereas other studies have been carried out on the intra-diurnal
pattern of Alternaria conidia [6,9-14]. Studies on intra-diurnal variation are becoming more
interesting, and some papers have shown that conidia concentrations vary considerably
between 3 and 30% over a 24-h period [11,13]. Intra-diurnal variations of airborne fungal
spores depend, among other factors, on weather conditions that affect the sporulation,
dispersal, and deposition of spores [15]. Changes in temperature during a day can favor
thermal turbulence, which simultaneously dilutes spore concentrations at ground level
and causes the release of more spores by mechanical disturbance [15]. Active mechanisms
of spore discharge are also related to rapid changes between wet and dry conditions.
Dry spore-discharging fungi release spores by the flow of air or by hygroscopic twisting
movement, which occurs upon drying. Such spores are mostly emitted when dry, warm,
and windy conditions prevail [16].

Aerobiological studies have focused on understanding the key factors that influence
the spore or pollen concentration in the air through correlation analysis [2,10,17-21], but less
work has been carried out to predict when critical concentrations of conidia occur [22]. In-
deed, understanding the factors associated with conidia dispersal is relevant, but predicting
when a significant number of conidia occur will be more useful for practical disease control
(for pathogenic species) in agricultural systems. Some studies have focused on trying to
predict the Alternaria concentration in the air by using linear regressions or ARIMA [4,17,21].
However, the dispersal of conidia in the field is affected by a multitude of weather factors,
which complicates its prediction with simple data analyses.

Machine learning (ML) has emerged along with other technologies (big data and
high-performance computing) to create new opportunities for big data analysis obtained
in intensive processes in agricultural operating environments and others. Currently, ML
is applied in many scientific fields, including meteorology [23-25], food safety [26], clima-
tology [27,28], and aerobiology [21,29,30]. One important field in which machine learning
and artificial intelligence can be used is in plant pathology, to detect plant diseases and
pests with digital images [31,32].

The use of ML algorithms (e.g., decision trees, random forest, k-nearest neighbor) in
field studies provides us with the tools needed to achieve such predictions. These algo-
rithms can identify patterns in the occurrence of an event (e.g., conidia) and the factors that
affect the event and, thus, can be used for predictive modeling. In this sense, ML can be
useful for predicting the Alternaria conidia dispersal in the field and the most influencing
weather variables on conidia release. These ML algorithms, such as classification and regres-
sion trees (CART), have been used for understanding the factors affecting conidia [14,20,21],
but not for predicting them. The prediction of conidia concentrations in the atmosphere
is key to minimizing the use of fungicides and practical disease control and, thus, this is
achievable via ML algorithms. The presence of inoculum in the air could be integrated
into disease management or DSS in two ways. Firstly, intra-diurnal variation of conidia
according to weather parameters can be studied and used to decide on the best time to
apply fungicide relative to the critical period in the day in which conidia concentration is
highest. Secondly, the daily conidia level could be predicted to determine when critical
levels of conidia are likely to occur according to weather parameters and, thus, fungicide
must be applied when the threshold is reached [4,17].

A Limia (NW Spain) is one of the most important potato producing areas in the coun-
try. The majority of the agricultural land is cultivated using traditional methods highly
dependent on the use of pesticides, but the deterioration of rural areas and the incorpo-
ration of a young generation of farmers looking for a greener agriculture has promoted
significant changes in crop management. There is particular interest concerning innovative
technologies for plant breeding and the introduction of remote sensing for different pur-
poses. In the last growing seasons, Alternaria epidemics are becoming more frequent and
aggressive, requiring several applications of specific fungicides for its control [2]. Farmers
demand research and innovation in the management of this disease. Despite several studies
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were carried out in relation to the progression of early blight in the area [2,4,10,17] and to
adjust decision support models proposed for other geographical areas, there are no studies
using ML algorithms to predict daily Alternaria conidia. The results obtained can be easily
extrapolated to other geographical areas.

Therefore, the objectives of the present study were as follows: (1) to understand the
key weather variables that affect the hourly conidia dispersal of A. solani and A. alternata
in a potato field; (2) to study the daily weather variables that influence daily conidia
concentration in the air; (3) to use these factors in different ML algorithms to predict the
daily conidia levels.

2. Materials and Methods
2.1. General Aspects of the Experimental Field

The experimental field was located in A Limia (Galicia, Northwest Spain) a geographi-
cal area where potatoes and wheat in annual rotation are the main agricultural crops. The
study was done for five growing seasons (2017-2021). Each year, a 4-hectare field was
planted with the potato cultivar Agria. This potato cultivar is susceptible to early blight.
The planting dates and dates of the important phenological stages for each year are shown
in Table S1. Weather data and aerobiological data were recorded from crop emergence to
crop senescence for each potato crop season.

2.2. Weather Data

Weather data were registered during the entire crop cycle of each year using a portable
weather station (i-METOS) placed at 1.5 m height in the middle of the experimental field.
Data of temperature (Temp, °C), dew point temperature (DewTemp, °C), relative humidity
(RH, %), wind speed (Wind, m/s), rainfall (Rain, mm), solar radiation (Rad, W/m?), and
leaf wetness (LW, h) were recorded hourly. The weather station also provided daily data
for the variables mentioned before.

2.3. Aerobiological Sampling

A Lanzoni aerobiological sampler (Lanzoni S.r.l., Bologna, Italy) with a 7-day recorder
spore-trap was placed 1.5 m away from the weather station. This sampler is a unit with an
in-built vacuum pump, which is designed to sample airborne particles (fungal spores in
this study). The sampler contains a clockwork-driven drum with a Melinex tape covered
by an adhesive substance where particles impact. This device allows us to obtain hourly
data concerning conidia. The methodology used for the aerobiological count of conidia
was described by Galan et al. [33]. The conidia of A. solani and A. alternata were counted,
and the concentration was expressed as conidia/m?3.

The release of conidia from the conidiophore (expressed as spore release [SR]) was
calculated with hourly RH data, and the escape of conidia from the crop canopy into
the atmosphere (named as “Escape”) was calculated with the hourly wind speed data
according to the formula proposed by Skelsey et al. [15].

2.4. Phenological Study

The stages of crop development were monitored weekly from plant emergence until
crop senescence. For this, the potato crop development was divided into three main
phenological stages based on the BBCH scale of the potato crop, as follows [34]:

1.  Vegetative stage—the period from 50% crop emergence until the beginning of flower-
ing (BBCH 09-61);

2. Reproductive stage (flowering)—the period from which at least 50% of plants were
flowering until when the flowers begin to fall (BBCH 61-69);

3. Senescence stage—when 50% of the plants begin to yellow/die until when 50% of
plants were completely dead (BBCH 95-99).
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2.5. Data Analyses

Data preparation and statistical analyses were performed with the R language and
environment for statistical computing version 4.1.3 [35] using R software (R Language and
Environment for Statistical Computing [version 4.2.1]). The following two types of data
were used in the statistical analysis: hourly and daily.

2.5.1. Hourly Analysis

Graphical model to ascertain the correlation structure between the hourly weather data
and conidia was used as described previously [36,37]. The graphical model was carried
out with dataset by minimizing the Bayesian information criterion (BIC) with the grapHD
R package (version 0.2.0) [38] implemented in R software. The theory of this method is
based on the conditional independence between a set of random variables provided in
the dataset. The covariance structure of a range of variables is encoded in a set of vertices
represented by points (variables) and a set of edges or lines connecting the vertices. The pair
of variables for which the conditional correlation given the other variables, is significantly
different from zero are connected by an edge (line). In other words, a pair of vertices
connected by a line are significantly correlated and vice versa. After the graphical model,
a correlation analysis to determine the specific correlation (negative or positive) between
the weather variables and conidia per hour with the ggcorplot R package version 0.1.3 [39]
was carried out. Spearman rank correlations between hourly conidia concentration and
weather parameters were considered.

Finally, the weather and conidia data for the five crop seasons were pooled, and their
mean values were computed. This was performed to analyze the overall effect of hourly
weather values, as well as the hour of the day, on the intra-diurnal conidia concentration.
To achieve this, the correlation structure of the variables was analyzed through graphical
modeling. Subsequently, a linear regression with the variables that were found to be
significantly correlated with the conidia was calculated. The significance level was set
at o« = 0.05.

2.5.2. Daily Analysis

For analysis of the daily data set, the conidia and weather data of the five crops
seasons were used. First, a graphical model to determine the correlation structure between
the variables was carried out. This was followed by a specific analysis of the Spearman
correlation between the daily variables of the current day and the data of four previous
days (=1, —2, —3, —4). The daily data set was used to predict conidia levels. Conidia level
was defined as the concentration of conidia that can cause considerable infection in the
field, considering a threshold of 10 conidia/m3. Then, the days with conidia concentration
lower than this threshold were classified as unmeaningful (UM), whereas the days that
exceeded this conidia concentration were classified as meaningful (M). This threshold was
chosen based on experiences in the field and has been also used previously to forecast
Alternaria concentrations [22]. Next, the data set was split into two groups (one which
includes conidia and one which did not). Different ML algorithms to develop a predictive
model for conidia level separately were used, namely decision tree, k-nearest neighbor
(KNN), and random forest (RF).

Decision trees represent relationships between predictors and potential outcomes
using a tree-like structure [40]. The tree starts with a single node (i.e., root), followed
by progressively smaller partitions as it grows. Each time the tree splits, the decision is
made as to how to partition the data based on the values of the predictor. The split points
are called decision nodes, and the outcomes are called branches. Further partitioning of
the data produces new decision nodes, which in turn produce additional decision nodes
until the decision tree ends. Nodes at the end or terminal of a tree are called leaf nodes.
Leaf nodes represent the predicted outcome based on the set of decisions made from the
root node, through the decision nodes to the leaf node [40]. For our study, we used the
following two decision tree models: (a) “rpart” (recursive partitioning regression tree),
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which is also called a classification and regression tree (CART), and (b) the “C5.0” method.
One of the distinguishing features between the two decision tree algorithms is how they
measure impurity during the learning process. While the C5.0 algorithm uses entropy
(i.e., a measure of the randomness in a partition), CART uses Gini (i.e., a measure of the
frequency that a particular data point in a partition would be incorrectly labeled if it was
assigned a random label based on a distribution in the data partition).

The KNN method belongs to a family of algorithms known as lazy learners since they
do not build a model or learn anything. To assign labels to unlabeled data, they simply
refer to the training data during the prediction phase. In KNN, the distance between the
test data and the new instance is computed. The closest K data points in the training dataset
are found based on certain distance functions. Here, K is the number of nearest data points
(neighbors) [41].

Random forest algorithms (also known as decision tree ensemble algorithms) combine
the results of multiple independent decision trees to make predictions about new data
sets [42]. Each tree in the forest assigns the most probable class label to each input. Random
forests are generally robust and stable compared to single trees built by decision trees,
such as classification and regression trees (CART). However, a major shortcoming of this
algorithm is that is not easily interpretable compared to CART.

Implementing the ML Algorithms

The data sets (without or with conidia) were split into 80% (411 values/rows) training
and 20% (102 values/rows) test data sets. All the algorithms were implemented with the
“train” function in the caret R package version 6.0-92 [40]. The method option in the “train”
function was set to “rpart”, “C5.0”, “knn”, and “rf” for implementing the CART, C5.0,
KNN, and RF algorithms, respectively. For all algorithms, we used 10-fold cross-validation
(CV) to optimize the models. The decision tree using the CART model was optimized
(i.e., pruned) by selecting an optimal complexity parameter (cp) via CV. For the C5.0, we
evaluated both the tree and rule-based models with or without winnowing (i.e., a process
of removing uninformative predictors), and the best model was selected. For the KNN, the
optimal number of neighbors (i.e., K) was selected via evaluation of a range of possible
Ks via CV, and the best one was selected. The hyperparameter (i.e., node size) in the RF
algorithm was also optimized by comparing the accuracy of models from different node
sizes (1 to 10). The node size that resulted in the highest accuracy was selected for building
the RF model.

The following metrics were used to evaluate the models: accuracy (i.e., the percentage
of correct predictions by the model), and kappa statistics/accuracy (i.e., as an adjustment
to predictive accuracy by accounting for the possibility of a correct prediction by chance
alone). These metrics were computed from the “confusionMatrix” function in the caret R
package version 6.0-92 [43].

3. Results
3.1. Overview of Weather Conditions during the Study

The daily weather conditions (daily mean temperature, daily mean relative humidity,
and daily accumulated rainfall) during growing seasons are shown in Figure 1. The hotter
and drier year was 2020. On the other hand, the coldest crop seasons were 2019 and 2021.
A higher amount of rainfall was recorded in 2017 and 2018.

3.2. Daily Alternaria Conidia Concentration and Crop Phenology

Daily conidia concentrations in the air at different phenological stages during the
study years are shown in Figure 2. The conidia concentration varied between the five crop
seasons. The 2020 season recorded the lowest conidia concentration (2476 conidia/m?)
compared to the other years. The 2018 season had the highest value of conidia concentration
(9264 conidia/m?) (Table S2). Finally, the 2017 season had the second highest conidia
concentration (7873 conidia/m3).
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Figure 1. The weather conditions during the cropping seasons (2017-2021). The variables of daily

mean relative humidity (RH, %) and accumulated rain (mm) are represented in Y1, and daily mean

temperature (%) is shown in Y2. Days after emergence were the number of days after 50% of
emergence. The emergence dates were 16 May (2017), 1 June (2018), 4 June (2019), and 10 June (2020
and 2021) (Table S1).
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According to the phenological stage, the highest number of conidia were found during
the flowering (2017-2019) and senescence (2020) stages. In 2021, most conidia were trapped
in the vegetative stage (Figure 2; Table S2). The conidia trapped during these stages
accounted for >45% (2017-2019), 52% (2020), and 54% (2021) of the total (Table S2).

3.3. Correlation Structure via Graphical Model of the Hourly Data Set

The results showed significant correlations between some of the hourly weather
variables (Figure 3). Five weather parameters (SR, DewTemp, Escape, Temp, RH) were
directly connected to hourly conidia (conidia variable), showing the relevance of these
weather parameters in explaining hourly patterns of conidia.

Rain

Wind
DewTemp

SR

Escape

Temp

RH

Conidia

Figure 3. A graphical model showing the conditional dependence of different hourly weather
variables and hourly concentrations of A. solani and A. alternata represented by the conidia variable.
Variables that are connected by a line are conditionally dependent or correlated significantly and
vice versa. The weather variables were relative humidity (RH), temperature (Temp), wind speed
(Wind), dew temperature (DewTemp), leaf wetness (LW), solar radiation (Rad), and rainfall (Rain).
The probability that conidia will be released is identified by the variable spore release (SR) and the
probability that conidia will escape from the canopy is named escape (Escape).

The Spearman correlations between hourly conidia and weather variables are shown
in Figure 4. Conidia were positively correlated with Temp, Rad, Escape, Wind, and SR. On
the contrary, RH and LW showed a negative relationship with the conidia.

Corr . l

100500 05 10

Escape
Wind .
Lw
Rain
. B
Rad .
DewTemp
|

Temp
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S T I &
& @4‘&@6\ & E o ¢ (ﬁ@ E
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Figure 4. Heatmap with Spearman correlations between hourly conidia concentration and weather
parameters. The selected weather variables were relative humidity (RH), temperature (Temp),
wind speed (Wind), dew temperature (DewTemp), leaf wetness (LW), solar radiation (Rad), and
rainfall (Rain).
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3.4. The Influence of the Weather Conditions per Hour on Alternaria Conidia

Figure 5 summarizes the dependence among weather variables and conidia in each
hour. Only SR was directly connected to the variable representing the hour of the day. The
conidia concentration in a given hour was directly influenced by the RH and Rad of the
hour, but not by the hour of the day variable (hour).

Hour

SR
Rain
Wind LW
Escape

DewTemp

RH

Temp

Conidia

Rad

Figure 5. A graphical model showing the conditional dependence of weather variables and conidia
concentrations at each hour in the day. Variables that are connected by a line are conditionally
dependent or correlated significantly and vice versa. The weather variables were relative humidity
(RH), temperature (Temp), wind speed (Wind), dew point temperature (DewTemp), leaf wetness
(LW), solar radiation (Rad), and rainfall (Rain). The probability that conidia will be released is
identified by the variable spore release (SR), and the probability that conidia will escape from the
canopy is named escape (Escape).

As shown in Figure 6, linear regression using Rad and RH as independent variables
explained over 80% of the variation in conidia concentration per hour. Here, Rad was
positively related to conidia concentration, while RH had a negative relation. Moreover, a
fitted model including both Rad and RH as independent variables showed a significant
effect on both weather variables, as well as their interactions on conidia concentration per
hour (Table 1). The model explained 98% of the variation in conidia concentration per hour.

Table 1. Coefficients of a combined linear regression analysis in which the weather variables that
had the strongest effect on conidia were used to predict conidia concentration according to the hour
in the day. Abbreviations are as follows: RH (relative humidity); Rad (solar radiation); RH: Rad
(interactions between relative humidity and solar radiation).

Estimate Std. Error t Value p-Value
(Intercept) 7.815 0.517 15.123 <0.0001 **
RH —0.073 0.006 —12.483 <0.0001 **
Rad —0.006 0.001 —4.445 <0.0001 **
RH:Rad 0.0001 0.000 7.824 <0.0001 **

=p <001

Figure 7 summarizes the intra-diurnal pattern of conidia concentration together with
the most relevant weather parameters according to the graphical model in Figure 5. Gener-
ally, conidia concentration began to rise from 8:00 am, and this coincided with a rise in Rad
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(>200 W/m?). This increase in conidia also coincided with a drop in RH (<90%) (Figure 6).
The hours (i.e., 12:00-16:00) with the highest Rad and lowest RH were associated with the
highest conidia concentration.
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Figure 6. Linear regression graphs with confidence bounds of solar radiation (Radiation) (a) or
Relative humidity (b) and conidia. The grey area surrounding the regression line represents the 95%
confidence interval.
a b 8
o =
o -
o] |3 = o
i g 7 g
e Sz 'E o
= L~5 - | | 5
@ 3 © - 5
S = o
b= z 2 3
8 5 S g
- =
(=]
o r 8 F &
) ‘ ‘
N . O_|II|||I|‘ |
0 5 10 15 20 0 5 10 15 20
Hour Hour

Figure 7. Intra-diurnal variations among Alternaria conidia and the most influenced weather parame-
ters, namely solar radiation (Radiation) (a) and relative humidity (b). Each bar represents each hour
of 24 h in a day.
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3.5. Analysis of Daily Data and Spearman Correlation between Alternaria Conidia and
Weather Variables

The graphical model with the daily data set also showed a strong conditional depen-
dence between the weather variables (Figure 8). Moreover, the graphical model showed a
strong interdependence between the variables representing conidia (Figure 8). The present
day’s conidia were directly connected to the conidia of the previous two days. Moreover,
the weather variable that was directly connected to conidia was DewTemp. The dew tem-
perature four days ago (DewTemp_4) influenced on the dew temperature of the following
day (DewTemp_3) and the conidia concentration of two days after (conidia_1). In addition,
the DewTemp_3 variable was directly related to the conidia concentration of the three
subsequent days (conidia_2; conidia_1; conidia). Furthermore, the daily concentration
of conidia was influenced by the concentration of the previous days, as shown by the
connections in Figure 8.

Wind

Escape
Wind_1

Rad_4 RH_3
Rad_1
Rad_2 =

Temp

Rad_3 RH 2
SR

Temp_1

Temp. 2 Wind_2 L
Wind_3 Rain

DewTemp_1

DewTemp_2

DewTemp
Temp_3 w1
Wind 4 Temp_4

DewTemp_3 Rain_1

DewTemp_4

Conidia_1 Conidia
Rain_2

Conidia_2 L 4

Conidia_3 w_4
Rain_3

Conidia_4 Rain 4

Figure 8. Graphical model showing conditional dependence/relationships between different daily
weather variables and conidia on different days. The weather variables were temperature (Temp),
dew temperature (DewTemp), relative humidity (RH), wind speed (Wind), spore escape (Escape),
spore release (SR), leaf wetness (LW), solar radiation (SR), and rainfall (Rain). The variable (weather
and conidia) numbers 1, 2, 3, and 4 indicate measurements taken 1, 2, 3, and 4 days ago, whereas
those without numbers were measured or recorded on the current day.

In general, conidia on the current day were more strongly correlated with conidia
from the previous days (Figure 9). However, the strongest positive correlations were found
between the conidia of the current and immediate past day. The conidia in the present day
had the strongest positive correlation with DewTemp 1 and 2 days ago, compared to the
other weather variables. In contrast, a stronger negative correlation was found between the
past 1 day’s wind and conidia.



Sensors 2022, 22, 7063

11 of 16

Conidia_4
Conidia_3
Conidia_2
Conidia_1
DewTemp_4
DewTemp_3
DewTemp_2
DewTemp_1
Wind_4
Wind_3
Wind_2
Wind_1
LW 4
LW_3
Lw_2
LW 1
Rain_4
Rain_3
Rain_2
Rain_1
Rad_4
Rad 3
Rad 2
Rad_1
RH_4
RH 3
RH 2
RH_1
Temp_4
Temp_3
Temp_2
Temp_1
SR
Escape
Wind

Lw

Rain

RH

Rad
DewTemp
Temp

Conidia

P g0 g B PP oD
00&@‘«6} & Q:bb Qg\q,'b‘ e \‘x\i@@ IR
&

Corr .

-1.0-0500 05 1.0

L) >§i’b§b£‘5i"§é$i’é§
S EESESSES TS
EOP P S
QIOTQTQ

«0 ,\0 «0 ‘0

Figure 9. Heatmap with Spearman correlations between daily conidia concentration and weather
parameters. The selected weather variables were relative humidity (RH), temperature (Temp), wind
speed (Wind), dew temperature (DewTemp), leaf wetness (LW), solar radiation (Rad), and rainfall
(Rain). The variable (weather and conidia) numbers 1, 2, 3, and 4 indicate measurements taken 1, 2, 3,
and 4 days ago, whereas those without numbers were measured or recorded on the current day.

3.6. Application of Machine Learning Algorithms to Predict Daily Alternaria Conidia Levels and
Optimization of Hyperparameters

The results of the cross-validation for optimizing the ML algorithms and graphical
outputs of the models are shown in the Supplementary Materials (Figures S1-510).

The optimal cp for the CART models were 0.03 (without conidia) and 0.48 (with
conidia) (Figures S1 and S2). The tree-based model without winnowing was used for
building the C5.0 model for the data without conidia. On the other hand, a rule-based
model with winnowing was the best C5.0 model for the data with conidia. The KNN
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algorithm was built with a K value of 23 (without conidia) and 13 (with conidia). The
optimal node size for the RF models were 1 (without conidia), and 8 (with conidia).

3.6.1. Variable of Importance

The CART identified dew temperature (2 days ago) as the most important variable, as
this variable represented the root of the tree in the absence of conidia in the data (Figure S3).
In contrast, when the conidia were in the data set, the conidia on the immediate past day
were the most important variable in the CART model (Figure S4). The RF model also
ranked dew temperature four days ago (data without conidia) and the conidia on one day
ago (data with conidia) as the most important variables.

3.6.2. Evaluation of Model Performance

The accuracies, as well as the kappa statistics of the ML algorithms, are shown in
Table 2. The RF model had the highest accuracy and kappa with the data without conidia,
whereas the CART model was the most accurate when conidia were included in the ML
process. In general, the models were more accurate (i.e., higher accuracy and kappa) when
conidia from the previous days were included in the learning process. The only exception
was the KNN algorithm, which had a lower accuracy and kappa in the presence of conidia
compared to when conidia were excluded (Table 2).

Table 2. Metrics of different machine learning algorithms for predicting the conidia level per day
with data sets that either included conidia or not.

Algorithm 2 Kappa Accuracy crb
With conidia C5.0 0.60 0.85 0.78-0.92
CART 0.62 0.86 0.78-0.92
KNN 0.40 0.79 0.700.86
RF 0.51 0.83 0.76-0.91
Without conidia C5.0 0.38 0.79 0.70-0.87
CART 0.35 0.78 0.69-0.86
KNN 0.41 0.80 0.71-0.88
RF 0.43 0.80 0.74-0.89

2 The following machine algorithms were tested: classification regression trees (CART), C5.0 decision tree (C5.0),
k-nearest neighbour (KNN), and random forest (RF). ? The 95% confidence interval of the accuracy of the models.

Except for the KNN algorithm, there was a marked improvement in the kappa statistics
when data from the previous days were included in the ML process. Model evaluation
based on the kappa statistics showed that the models that did not include conidia were no
better than a random guess, as their kappa statistics value was less than 0.5. In contrast,
when the models included conidia from the previous days, the models were better than a
random guess, as evidenced by their kappa statistics being greater than 0.5 (Table 2).

3.6.3. Overview of the Wining Algorithm (CART)

The CART, which was the best model, predicted a meaningful conidia level when
conidia on the previous day were at least 8.5 conidia/m? (Figure S4).

4. Discussion

While early blight epidemics are usually initiated from overwintering inoculum in
the soil [7], the subsequent disease development in the field is mainly caused by airborne
conidia of A. solani and A. alternata. Therefore, understanding the factors that influence
the airborne conidia of these pathogens is important. Accordingly, the goal of this study
was to understand the key factors that influence the airborne conidia of the A. solani and A.
alternata on the ambient growth of a potato crop, as well as to predict via ML the risk of a
high pressure of inoculum that causes new reinfections.
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Most of the counted conidia were captured during the reproductive stage. Several
studies reported that the reproductive stage, which starts with flowering, generally, marks
the point when the potato crop becomes susceptible to early blight and, thus, this fact
supports profuse sporulation [10,44—46]. Abuley and Nielsen [1], in their maturity-based
model, showed that fungicide application should only start during the reproductive stage,
as this is the stage the crop is susceptible to early blight. In contrast to our result, Van der
Waals et al. [6] found abundant conidia during crop senescence or harvest. This discrepancy
with our study might be because we considered A. solani and A. alternata, whereas Van der
Waals et al. [6] considered only A. solani. However, A. alternata is more abundant in the air,
and its inclusion in our study might have influenced the conidia concentration.

Our study showed that the hour of the day matters less to the dispersal of conidia.
Rather, the weather conditions (i.e., solar radiation and RH) that characterize an hour
are the major influence on conidia dispersal per hour. Indeed, the linear regression with
RH and solar radiation explained 98% of the variation in intra-day conidia concentration.
Practically, our results suggest a better prediction of the conidia in a given hour via the
use of the weather variables that characterize the hour, but not the hour itself. Similar
relationships among conidia and weather parameters (e.g., as low RH and high solar
radiation) were found by other authors [6,10,14,47]. Indeed, on rainless days, it is common
to experience higher solar radiation and lower RH during the afternoon period of the day.
It must also be noted that the reported low conidia dispersal during the night might be
due to the weather conditions (low solar radiation and high RH) during these night times.
Bardei et al. [48] also suggested that night times record fewer conidia compared to the
daytime because of the unfavorable weather conditions for conidia release and dispersal
(i.e., low temperature and wind speed, and high RH) at night.

The unique approach adopted by this study of considering several variables, including
the hour of the day in the analysis (such as in the graphical model) enabled us to arrive
at this robust conclusion. Previous studies analyzed single weather variables and conidia
per hour, and this might have masked their ability to arrive at the true determinant of the
variation in conidia concentration in a day.

The fact that there was a strong correlation between conidia from previous days
suggests the conidia trapped in a given day is unlikely to have been dispersed the same
day. This also suggests that attempts to link conidia and the weather variables in a given
day might result in a spurious correlation with no practical significance. For this reason, in
this study, the weather conditions from the previous days in data analysis were included.
As shown in the results, conidia on a given day was strongly correlated with previous
weather variables. The weather variable with the strongest effect on conidia per day was
dew temperature. Perhaps the fact that dew temperature is a good measure of dryness
could explain its strong association with conidia. Indeed, high conidia concentrations
are always associated with dryness. Nevertheless, it must be noted that this result is
subject to the other variables used in the graphical model. The graphical model showed the
conditional dependence or correlation, and these results might change if some variables
are also changed. These results agree with Cowgill et al. [5] who proposed the use of dew
(i.e., dew severity value) for estimating early blight risk in the TOMCAST model. With this
modification, the disease rate was reduced with fewer fungicide applications.

Whiles understanding the factors that influence the conidia concentration in the air
is important, it is, perhaps, more relevant to use these factors for predicting the conidia
concentrations in the air. Such predictions could play a vital role in integrating conidia
concentration into the current disease forecasting models for early blight, which as yet
do not include a sub-model for predicting airborne conidia. Our approach for predicting
airborne conidia was based on classifying the total conidia per day as a meaningful level
(M) or unmeaningful level (UM) when daily conidia levels were higher or lower than
10 conidia/m?3, respectively. This level has previously been considered in other studies to
forecast Alternaria concentrations [22]. Moreover, our field observations suggest that this
threshold is the critical level of infection.
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While ML algorithms are becoming increasing attractive for modelling big data, the
correct choice of ML algorithm for the specific purpose is critical. This study evaluated
a range of widely used ML algorithms for classification problems. The output of the ML
shows that the inclusion of conidia from the previous days was critical for achieving a
better prediction of conidia levels. As shown earlier in this study, the present day’s conidia
were strongly linked to conidia from the previous day. Therefore, it is not surprising to
arrive at a better prediction when conidia from the previous days were included in the ML
process. To the best of our knowledge, our study is the first to achieve such a significantly
high prediction accuracy of conidia level with ML.

The random forest (RF) algorithm has been touted as a better model for classifi-
cation [21,29,30] because its ensembles several decision trees which, thus, improves its
prediction strength. However, it was not the case in our study. When conidia were included
in the ML process, the CART model emerged as the best model. It is, however, unclear to
us what might have caused this higher prediction with the CART model compared to the
RF model.

Although we had a small data set, our results have provided a strong basis for inte-
grating aerial conidia into forecasting the risk of early blight. By simply classifying a day
as risky (meaningful conidia level) or not (unmeaningful conidia level), models, such as
TOMCAST, can be modified to improve risk assessment.

5. Conclusions

This study showed that conidia per hour is influenced by the weather conditions that
characterize the hour, but not the hour of the day. Specifically, the RH and solar radiation
were the most relevant weather parameters to explain the concentration of conidia per
hour. Dew point temperature was the weather variable with the strongest effect on conidia
per day. An improved prediction of conidia level was achieved via ML algorithms when
conidia of previous days is considered in the analysis. Among ML algorithms, the CART
model showed the best accuracy. Although more years of study are needed, these results
can be useful to understand early blight epidemics on potato crop and increase the accuracy
of developing forecast models for sustainable agriculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/s22187063/s1, Figure S1. Cross-validation to test a range of
complexity parameters for the classification and regression tree (CART) model without Alternaria
conidia; Figure S2. Cross-validation to test a range of complexity parameters for the classification
and regression tree (CART) model with Alternaria conidia; Figure S3. A decision tree based on the
classification and regression tree (CART) model with the data set without Alternaria conidia. UM and
M represents meaningful (<10 conidia/ m?) and meaningful (>10 conidia/ m?3). The weather variable
Wind_1, DewTemp_2, and Rad_4, represent wind (on 1 previous day), dew temperature (2 previous
days), and solar radiation (4 previous days), respectively; Figure S4. A decision tree based on the
classification and regression tree (CART) model with the data set with Alternaria conidia. UM and M
represent unmeaningful (<10 conidia/ m?) and meaningful (>10 conidia/ m?). The weather variable
conidia_1 represent conidia in immediate past day; Figure S5. Cross-validation for the selection of
the best model for the C5.0 decision tree model with the data set without Alternaria conidia; Figure S6.
Cross-validation for the selection of the best model for the C5.0 decision tree model with the data set
with Alternaria conidia; Figure S7. The variable of importance from the random forest model with
the data set that did not include Alternaria conidia; Figure S8. The variable of importance from the
random forest model with the data set that included Alternaria conidia; Figure S9. Cross-validation to
select the optimal number of neighbors in the k-nearest neighbor (KNN) algorithm. The data used
here did not include Alternaria conidia; Figure S10. Cross-validation to select the optimal number of
neighbors in the k-nearest neighbor (KNN) algorithm. The data used here included Alternaria conidia;
Table S1. Dates of the main phenological phases by growing season. DAE: days after emergence;
Table S2. Total Alternaria conidia by growing season and distribution of conidia in percentage during
the main phenological phases.
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