5 research outputs found

    Diseño y posicionado de la prótesis inversa de hombro utilizando técnicas de simulación numérica por método de los elementos ¿nitos y biomodelos realizados por impresión 3D

    Get PDF
    Analizar el posicionado y orientación de la prótesis inversa de hombro (PIH) en la escápula, y mejorar su anclaje y adaptación utilizando técnicas de Simulación Numérica por metodología de elementos finitos (FEM) y biomodelos realizados por impresión 3D. Métodos. Mediante la TAC de un paciente intervenido de PIH se genera un biomodelo 3D-virtual. Se estudia el conjunto placa base-escápula mediante software FEM simulando el comportamiento mecánico, comparando la intervención frente a unas condiciones de excentricidad de 4 mm y lateralización de 5mm. Se analizan las tensiones y deformaciones ejercidas. Resultados. Se obtiene una reducción de los esfuerzos mecánicos en la placa base de 23,7%. Se diseña un dispositivo de centrado-guía, elaborado mediante la técnica de impresión 3D. Conclusión. El modelado y análisis FEM de la morfología del hombro del paciente y su biomodelo 3D ayudan a una óptima planificación pre-operatoria. La impresión de guías 3D puede mejorar el posicionamiento y anclaje de la placa base de la PI

    Upgrading brewer's spent grain as functional filler in polypropylene matrix

    Full text link
    Brewer's spent grain (BSG) is a by-product of the brewing industry that contributes to a large volume of wastes. The lignocellulosic nature of this waste, together with presence of functional components such as antioxidants, represents an attractive for the composite's industry. In this work, BSG has been used as functional filler for polypropylene matrix to give an additional use to this industrial waste. Addition of BSG filler improves the overall environmental efficiency of the polypropylene matrix thus leading to high environmentally friendly materials. BSG can be loaded in the 10 40 wt% range with easy manufacturing, balanced mechanical properties, and additionally, excellent antioxidant properties are achieved with increasing BSG loading due to natural antioxidants that have not been removed during the brewing process. In particular, the onset of the thermo-oxidative degradation of polypropylene is improved by 15 20°C for different compositions. Due to the lignocellulosic nature of BSG, water uptake is a clear drawback of PP BSG composites but formulations containing 10-30 wt% BSG hold the water uptake at very low values. POLYM. COMPOS., 38:40 47, 2017. © 2015 Society of Plastics EngineersRevert, A.; Reig Pérez, MJ.; Segui Llinares, VJ.; Boronat Vitoria, T.; Fombuena Borrás, V.; Balart Gimeno, RA. (2017). Upgrading brewer's spent grain as functional filler in polypropylene matrix. Polymer Composites. 38(1):40-47. doi:10.1002/pc.23558S4047381Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., & White, R. H. (2011). Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and Polymers, 12(7), 919-926. doi:10.1007/s12221-011-0919-1Hemmati, F., & Garmabi, H. (2012). A study on fire retardancy and durability performance of bagasse fiber/polypropylene composite for outdoor applications. Journal of Thermoplastic Composite Materials, 26(8), 1041-1056. doi:10.1177/0892705711433350Li, L., Gong, M., & Li, D. (2013). Evaluation of the kinetic friction performance of modified wood decking products. Construction and Building Materials, 40, 863-868. doi:10.1016/j.conbuildmat.2012.11.033Seefeldt, H., & Braun, U. (2011). Burning behavior of wood-plastic composite decking boards in end-use conditions: the effects of geometry, material composition, and moisture. Journal of Fire Sciences, 30(1), 41-54. doi:10.1177/0734904111423488Xanthos, M., Dey, S. K., Mitra, S., Yilmazer, U., & Feng, C. (2002). Prototypes for building applications based on thermoplastic composites containing mixed waste plastics. Polymer Composites, 23(2), 153-163. doi:10.1002/pc.10421Bledzki, A. K., Letman-Sakiewicz, M., & Murr, M. (2010). Influence of static and cyclic climate condition on bending properties of wood plastic composites (WPC). Express Polymer Letters, 4(6), 364-372. doi:10.3144/expresspolymlett.2010.46Li, L., Gong, M., & Li, D. (2012). Evaluation of the slip resistance of modified wood decking products. Construction and Building Materials, 35, 440-443. doi:10.1016/j.conbuildmat.2012.04.015Kazemi, Y., Cloutier, A., & Rodrigue, D. (2013). Mechanical and morphological properties of wood plastic composites based on municipal plastic waste. Polymer Composites, 34(4), 487-493. doi:10.1002/pc.22442Khalil, H. A., Tehrani, M., Davoudpour, Y., Bhat, A., Jawaid, M., & Hassan, A. (2012). Natural fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 32(5), 330-356. doi:10.1177/0731684412458553Kim, B.-J., Yao, F., Han, G., & Wu, Q. (2011). Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, 33(1), 68-78. doi:10.1002/pc.21244Kumar, V., Tyagi, L., & Sinha, S. (2011). Wood flour–reinforced plastic composites: a review. Reviews in Chemical Engineering, 27(5-6). doi:10.1515/revce.2011.006Kazemi Najafi, S. (2013). Use of recycled plastics in wood plastic composites – A review. Waste Management, 33(9), 1898-1905. doi:10.1016/j.wasman.2013.05.017Ozen, E., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2013). Natural fiber blend-nylon 6 composites. Polymer Composites, 34(4), 544-553. doi:10.1002/pc.22463Petchwattana, N., & Covavisaruch, S. (2013). Effects of rice hull particle size and content on the mechanical properties and visual appearance of wood plastic composites prepared from poly(vinyl chloride). Journal of Bionic Engineering, 10(1), 110-117. doi:10.1016/s1672-6529(13)60205-xSailaja, R. R. N., & Deepthi, M. V. (2010). Mechanical and thermal properties of compatibilized composites of LDPE and esterified unbleached wood pulp. Polymer Composites, 32(2), 199-209. doi:10.1002/pc.21033Shahi, P., Behravesh, A. H., Daryabari, S. Y., & Lotfi, M. (2012). Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polymer Composites, 33(5), 753-763. doi:10.1002/pc.22201De Carvalho Neto, A. G. V., Ganzerli, T. A., Cardozo, A. L., Fávaro, S. L., Pereira, A. G. B., Girotto, E. M., & Radovanovic, E. (2013). Development of composites based on recycled polyethylene/sugarcane bagasse fibers. Polymer Composites, 35(4), 768-774. doi:10.1002/pc.22720Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253-1272. doi:10.1002/pen.21328Karimi, A. N., Tajvidi, M., & Pourabbasi, S. (2007). Effect of compatibilizer on the natural durability of wood flour/high density polyethylene composites against rainbow fungus (Coriolus versicolor). Polymer Composites, 28(3), 273-277. doi:10.1002/pc.20305Luo, S., Cao, J., & Peng, Y. (2013). Properties of glycerin-thermally modified wood flour/polypropylene composites. Polymer Composites, 35(2), 201-207. doi:10.1002/pc.22651Matuana, L. M., Woodhams, R. T., Balatinecz, J. J., & Park, C. B. (1998). Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polymer Composites, 19(4), 446-455. doi:10.1002/pc.10119Sobczak, L., Brüggemann, O., & Putz, R. F. (2012). Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. Journal of Applied Polymer Science, 127(1), 1-17. doi:10.1002/app.36935Toupe, J. L., Trokourey, A., & Rodrigue, D. (2013). Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Phase compatibilization and quality/cost ratio. Polymer Composites, 35(4), 730-746. doi:10.1002/pc.22716Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819. doi:10.1016/j.compositesa.2010.03.005Xu, Y., Lee, S.-Y., & Wu, Q. (2011). Creep analysis of bamboo high-density polyethylene composites: Effect of interfacial treatment and fiber loading level. Polymer Composites, 32(5), 692-699. doi:10.1002/pc.21088Zhu, L., Cao, J., Wang, Y., Liu, R., & Zhao, G. (2013). Effect of MAPP on interfacial compatibility of wood flour/polypropylene composite evaluated with dielectric approach. Polymer Composites, 35(3), 489-494. doi:10.1002/pc.22686Mussatto, S. I. (2014). Brewer’s spent grain: a valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture, 94(7), 1264-1275. doi:10.1002/jsfa.6486Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43(1), 1-14. doi:10.1016/j.jcs.2005.06.001Mussatto, S. I., Fernandes, M., Rocha, G. J. M., Órfão, J. J. M., Teixeira, J. A., & Roberto, I. C. (2010). Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresource Technology, 101(7), 2450-2457. doi:10.1016/j.biortech.2009.11.025Mussatto, S. I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresource Technology, 148, 302-310. doi:10.1016/j.biortech.2013.08.046Pejin, J., Radosavljevic, M., Grujic, O., Mojovic, L., Kocic-Tanackov, S., Nikolic, S., & Djukic-Vukovic, A. (2013). Possible application of brewer’s spent grain in biotechnology. Hemijska industrija, 67(2), 277-291. doi:10.2298/hemind120410065pVieira, E., Rocha, M. A. M., Coelho, E., Pinho, O., Saraiva, J. A., Ferreira, I. M. P. L. V. O., & Coimbra, M. A. (2014). Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products, 52, 136-143. doi:10.1016/j.indcrop.2013.10.012Araujo, J. R., Adamo, C. B., Costa e Silva, M. V., & De Paoli, M.-A. (2013). Antistatic-reinforced biocomposites of polyamide-6 and polyaniline-coated curauá fibers prepared on a pilot plant scale. Polymer Composites, 34(7), 1081-1090. doi:10.1002/pc.22516Gu, R., Sain, M., & Kokta, B. V. (2014). Evaluation of wood composite additives in the mechanical property changes of PE blends. Polymer Composites, 36(2), 287-293. doi:10.1002/pc.22942Pérez-Fonseca, A. A., Robledo-Ortíz, J. R., Moscoso-Sánchez, F. J., Rodrigue, D., & González-Núñez, R. (2013). Injection molded self-hybrid composites based on polypropylene and natural fibers. Polymer Composites, 35(9), 1798-1806. doi:10.1002/pc.22834Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047Poletto, M., Zattera, A. J., & Santana, R. M. C. (2014). Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polymer Composites, 35(10), 1935-1942. doi:10.1002/pc.22852Wang, W., Yang, X., Bu, F., & Sui, S. (2014). Properties of rice husk-HDPE composites after exposure to thermo-treatment. Polymer Composites, 35(11), 2180-2186. doi:10.1002/pc.22882Kakroodi, A. R., & Rodrigue, D. (2014). Impact modification of polypropylene-based composites using surface-coated waste rubber crumbs. Polymer Composites, 35(11), 2280-2289. doi:10.1002/pc.22893Connolly, A., Piggott, C. O., & FitzGerald, R. J. (2013). Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain. International Journal of Food Science & Technology, 48(8), 1670-1681. doi:10.1111/ijfs.12137McCarthy, A. L., O’Callaghan, Y. C., Connolly, A., Piggott, C. O., FitzGerald, R. J., & O’Brien, N. M. (2013). Phenolic-enriched fractions from brewers’ spent grain possess cellular antioxidant and immunomodulatory effects in cell culture model systems. Journal of the Science of Food and Agriculture, 94(7), 1373-1379. doi:10.1002/jsfa.6421Moreira, M. M., Morais, S., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2012). A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry, 403(4), 1019-1029. doi:10.1007/s00216-011-5703-yMoreira, M. M., Morais, S., Carvalho, D. O., Barros, A. A., Delerue-Matos, C., & Guido, L. F. (2013). Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Research International, 54(1), 382-388. doi:10.1016/j.foodres.2013.07.023McCarthy, A. L., O’Callaghan, Y. C., Neugart, S., Piggott, C. O., Connolly, A., Jansen, M. A. K., … O’Brien, N. M. (2013). The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chemistry, 141(3), 2567-2574. doi:10.1016/j.foodchem.2013.05.048Tajvidi, M., & Takemura, A. (2009). Effect of fiber content and type, compatibilizer, and heating rate on thermogravimetric properties of natural fiber high density polyethylene composites. Polymer Composites, 30(9), 1226-1233. doi:10.1002/pc.2068

    SOLATINA: a Latin-American Bee Research Association to foster the interactions between scientists and coordinate large-scale research programs

    No full text
    Bees (members of the super family Apoidea) are the main pollinators in modern agro-ecosystems, where they have a critical positive effect on yield improvement for about 75% of world's crops (Klein et al., 2007; Potts et al., 2016). However, there is evidence of a worldwide decline in the populations of wild bees, and numerous reports of high colony losses of managed bees, which may disrupt crop pollination, honey production and the reproduction of bee-pollinated wild plants (Potts et al., 2010), leading to negative social, economic and ecological effects (Potts et al., 2016). Latin America (hereafter, LA) is home to about 8 million managed honey bee colonies (Apis mellifera L.) which produce more than 200000 tons of honey annually (FAOSTAT, 2018). Several Latin American countries are among the global top 20 in terms of honey production and beehives stock, such as Argentina, Brazil and Mexico (García, 2018; Requier et al., 2018). Moreover, LA hosts a unique fauna of native bees, with about 5,000 identified species, including 391 species of the native stingless bees in the tribu Meliponini (Camargo & Pedro, 2008; Freitas et al., 2009). Some of those native stingless bees are managed since ancient times to produce honey through the practice of “Meliponiculture” (Jaffé et al., 2015). Latin American bee research has contributed to improve our understanding of problems relevant for apiculture, bee diversity and the causes of bee population decline in the region among other topics (see e.g., Maggi et al., 2016; Morales, Arbetman, Cameron, & Aizen, 2013; Vandame & Palacio, 2010). These scientific achievements are mostly the result of research efforts led by groups working independently rather than the product of cooperative research efforts between different countries. We argue that the strength, impact, and relevance of these research efforts, for apiculture and bees in the region, can be improved by promoting interactions between Latin American bee scientists and coordinating large-scale research programs.Fil: Antúnez, Karina. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Requier, Fabrice. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Aldea Sánchez, Patricia. Universidad Mayor; ChileFil: Basualdo, Marina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Veterinarias. Departamento de Producción Animal; ArgentinaFil: Branchiccella, Belén. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Calderón, Rafael. Universidad Nacional; Costa RicaFil: Correa Benítez, Adriana. Universidad Nacional Autónoma de México; MéxicoFil: Delgado Cañedo, Andres. Universidade Federal do Pampa; BrasilFil: Fuselli, Sandra Rosa. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morales, Carolina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Pérez Castro, Eleazar. Universidad Nacional del Centro del Perú; PerúFil: Plischuk, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Porrini, Martín Pablo. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Segui Goncalves, Lionel. Universidad Federal Rural do Semiarido; BrasilFil: Tapia González, José María. Universidad de Guadalajara; MéxicoFil: Torres, Alejandra. Universidad de Pamplona; ColombiaFil: Velarde, Rodrigo. Instituto Apícola Boliviano; BoliviaFil: Invernizzi, Ciro. Universidad de la República; Urugua

    First large-scale study reveals important losses of managed honey bee and stingless bee colonies in Latin America

    No full text
    International audienceOver the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees ( Apis mellifera ), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016–2017 and 2017–2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists

    Jornadas Nacionales de Robótica y Bioingeniería 2023: Libro de actas

    Full text link
    Las Jornadas de Robótica y Bioingeniería de 2023 tienen lugar en la Escuela Técnica Superior de Ingeniería Industrial de la Universidad Politécnica de IVIadrid, entre los días 14 y 16 de junio de 2023. En este evento propiciado por el Comité Español de Automática (CEA) tiene lugar la celebración conjunta de las XII Jornadas Nacionales de Robótica y el XIV Simposio CEA de Bioingeniería. Las Jornadas Nacionales de Robótica es un evento promovido por el Grupo Temático de Robótica (GTRob) de CEA para dar visibilidad y mostrar las actividades desarrolladas en el ámbito de la investigación y transferencia tecnológica en robótica. Asimismo, el propósito de Simposio de Bioingeniería, que cumple ahora su decimocuarta dicción, es el de proporcionar un espacio de encuentro entre investigadores, desabolladores, personal clínico, alumnos, industriales, profesionales en general e incluso usuarios que realicen su actividad en el ámbito de la bioingeniería. Estos eventos se han celebrado de forma conjunta en la anualidad 2023. Esto ha permitido aunar y congregar un elevado número de participantes tanto de la temática robótica como de bioingeniería (investigadores, profesores, desabolladores y profesionales en general), que ha posibilitado establecer puntos de encuentro, sinergias y colaboraciones entre ambos. El programa de las jornadas aúna comunicaciones científicas de los últimos resultados de investigación obtenidos, por los grupos a nivel español más representativos dentro de la temática de robótica y bioingeniería, así como mesas redondas y conferencias en las que se debatirán los temas de mayor interés en la actualidad. En relación con las comunicaciones científicas presentadas al evento, se ha recibido un total de 46 ponencias, lo que sin duda alguna refleja el alto interés de la comunidad científica en las Jornadas de Robótica y Bioingeniería. Estos trabajos serán expuestos y presentados a lo largo de un total de 10 sesiones, distribuidas durante los diferentes días de las Jornadas. Las temáticas de los trabajos cubren los principales retos científicos relacionados con la robótica y la bioingeniería: robótica aérea, submarina, terrestre, percepción del entorno, manipulación, robótica social, robótica médica, teleoperación, procesamiento de señales biológicos, neurorehabilitación etc. Confiamos, y estamos seguros de ello, que el desarrollo de las jornadas sea completamente productivo no solo para los participantes en las Jornadas que podrán establecer nuevos lazos y relaciones fructíferas entre los diferentes grupos, sino también aquellos investigadores que no hayan podido asistir. Este documento que integra y recoge todas las comunicaciones científicas permitirá un análisis más detallado de cada una de las mismas
    corecore