55 research outputs found

    Identification of Key Molecules Involved in the Protection of Vultures Against Pathogens and Toxins

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License.This work was supported by the Junta de Comunidades de Castilla-La Mancha (JCCM), project PII1I09-0243-4350.Peer Reviewe

    Expression of recombinant Rhipicephalus (Boophilus) microplus, R. annulatus and R. decoloratus Bm86 orthologs as secreted proteins in Pichia pastoris

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhipicephalus (Boophilus) spp. ticks economically impact on cattle production in Africa and other tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The R. microplus Bm86 protective antigen has been produced by recombinant DNA technology and shown to protect cattle against tick infestations.</p> <p>Results</p> <p>In this study, the genes for Bm86 (<it>R. microplus</it>), Ba86 (<it>R. annulatus</it>) and Bd86 (<it>R. decoloratus</it>) were cloned and characterized from African or Asian tick strains and the recombinant proteins were secreted and purified from <it>P. pastoris</it>. The secretion of recombinant Bm86 ortholog proteins in <it>P. pastoris </it>allowed for a simple purification process rendering a final product with high recovery (35–42%) and purity (80–85%) and likely to result in a more reproducible conformation closely resembling the native protein. Rabbit immunization experiments with recombinant proteins showed immune cross-reactivity between Bm86 ortholog proteins.</p> <p>Conclusion</p> <p>These experiments support the development and testing of vaccines containing recombinant Bm86, Ba86 and Bd86 secreted in <it>P. pastoris </it>for the control of tick infestations in Africa.</p

    Reciprocal regulation of NF-kB (Relish) and subolesin in the tick vector, Ixodes scapularis

    Get PDF
    [Background]: Tick Subolesin and its ortholog in insects and vertebrates, Akirin, have been suggested to play a role in the immune response through regulation of nuclear factor-kappa B (NF-kB)-dependent and independent gene expression via interaction with intermediate proteins that interact with NF-kB and other regulatory proteins, bind DNA or remodel chromatin to regulate gene expression. The objective of this study was to characterize the structure and regulation of subolesin in Ixodes scapularis. I. scapularis is a vector of emerging pathogens such as Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti that cause in humans Lyme disease, anaplasmosis and babesiosis, respectively. The genome of I. scapularis was recently sequenced, and this tick serves as a model organism for the study of vector-host-pathogen interactions. However, basic biological questions such as gene organization and regulation are largely unknown in ticks and other arthropod vectors. [Principal Findings]: The results presented here provide evidence that subolesin/akirin are evolutionarily conserved at several levels (primary sequence, gene organization and function), thus supporting their crucial biological function in metazoans. These results showed that NF-kB (Relish) is involved in the regulation of subolesin expression in ticks, suggesting that as in other organisms, different NF-kB integral subunits and/or unknown interacting proteins regulate the specificity of the NF-kB-mediated gene expression. These results suggested a regulatory network involving cross-regulation between NF-kB (Relish) and Subolesin and Subolesin auto-regulation with possible implications in tick immune response to bacterial infection. [Significance]: These results advance our understanding of gene organization and regulation in I. scapularis and have important implications for arthropod vectors genetics and immunology highlighting the possible role of NF-kB and Subolesin/Akirin in vector-pathogen interactions and for designing new strategies for the control of vector infestations and pathogen transmission.This research was supported by grants BFU2008-01244/BMC and BFU2011-23896 to JF, the Oklahoma Agricultural Experimental Grant 1669 and the Walter R. Sitlington Endowed Chair for Food Animal Research to KMK, and the EU FP7 ANTIGONE project number 278976. V. Naranjo was funded by the European Social Fund and the Junta de Comunidades de Castilla-La Mancha (Program FSE 2007-2013), Spain. N. Ayllón was funded by Ministerio de Educación y Ciencia (MEC), Spain.Peer Reviewe

    Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection

    Get PDF
    BACKGROUND: Ticks represent a significant health risk to animals and humans due to the variety of pathogens they can transmit during feeding. The traditional use of chemicals to control ticks has serious drawbacks, including the selection of acaricide-resistant ticks and environmental contamination with chemical residues. Vaccination with the tick midgut antigen BM86 was shown to be a good alternative for cattle tick control. However, results vary considerably between tick species and geographic location. Therefore, new antigens are required for the development of vaccines controlling both tick infestations and pathogen infection/transmission. Tick proteins involved in tick-pathogen interactions may provide good candidate protective antigens for these vaccines, but appropriate screening procedures are needed to select the best candidates. METHODS: In this study, we selected proteins involved in tick-Anaplasma (Subolesin and SILK) and tick-Babesia (TROSPA) interactions and used in vitro capillary feeding to characterize their potential as antigens for the control of cattle tick infestations and infection with Anaplasma marginale and Babesia bigemina. Purified rabbit polyclonal antibodies were generated against recombinant SUB, SILK and TROSPA and added to uninfected or infected bovine blood to capillary-feed female Rhipicephalus (Boophilus) microplus ticks. Tick weight, oviposition and pathogen DNA levels were determined in treated and control ticks. RESULTS: The specificity of purified rabbit polyclonal antibodies against tick recombinant proteins was confirmed by Western blot and against native proteins in tick cell lines and tick tissues using immunofluorescence. Capillary-fed ticks ingested antibodies added to the blood meal and the effect of these antibodies on tick weight and oviposition was shown. However, no effect was observed on pathogen DNA levels. CONCLUSIONS: These results highlighted the advantages and some of the disadvantages of in vitro tick capillary feeding for the characterization of candidate tick protective antigens. While an effect on tick weight and oviposition was observed, the effect on pathogen levels was not evident probably due to high tick-to-tick variations among other factors. Nevertheless, these results together with previous results of RNA interference functional studies suggest that these proteins are good candidate vaccine antigens for the control of R. microplus infestations and infection with A. marginale and B. bigemina

    Tonsils of the soft palate do not mediate the response of pigs to oral vaccination with heat-inactivated Mycobacterium bovis

    Get PDF
    Mycobacterium bovis causes animal tuberculosis (TB) in cattle, humans, and other mammalian species, including pigs. The goal of this study was to experimentally assess the responses of pigs with and without a history of tonsillectomy to oral vaccination with heat-inactivated M. bovis and challenge with a virulent M. bovis field strain, to compare pig and wild boar responses using the same vaccination model as previously used in the Eurasian wild boar (Sus scrofa), to evaluate the use of several enzyme-linked immunosorbent assays (ELISAs) and lateral flow tests for in vivo TB diagnosis in pigs, and to verify if these tests are influenced by oral vaccination with inactivated M. bovis. At necropsy, the lesion and culture scores were 20% to 43% higher in the controls than those in the vaccinated pigs. Massive M. bovis growth from thoracic tissue samples was observed in 4 out of 9 controls but in none of the 10 vaccinated pigs. No effect of the presence or absence of tonsils was observed on these scores, suggesting that tonsils are not involved in the protective response to this vaccine in pigs. The serum antibody levels increased significantly only after challenge. At necropsy, the estimated sensitivities of the ELISAs and dual path platform (DPP) assays ranged from 89% to 94%. In the oral mucosa, no differences in gene expression were observed in the control group between the pigs with and without tonsils. In the vaccinated group, the mRNA levels for chemokine (C-C motif) receptor 7 (CCR7), interferon beta (IFN-β), and methylmalonyl coenzyme A mutase (MUT) were higher in pigs with tonsils. Complement component 3 mRNA levels in peripheral blood mononuclear cells (PBMC) increased with vaccination and decreased after M. bovis challenge. This information is relevant for pig production in regions that are endemic for M. bovis and for TB vaccine research.This study is a contribution to EU FP7 grant 613779 WildTBVac and to MINECO Plan Nacional grant AGL2011-30041 and FEDER.Peer Reviewe

    Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis

    Get PDF
    Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.This research was supported by Plan Nacional I+D+I AGL2011-30041 from Ministerio de Economía y Competitividad (MINECO), Spain and FEDER. This is also a contribution to EU FP7 grant WildTBvac and the EU FP7 ANTIGONE project number 278976. R.C. Galindo was funded by MEC, Spain. B. Beltrán-Beck was supported by MINECO grant BES-2009-017401.Peer Reviewe

    Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics

    Get PDF
    Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that cause millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients’ disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient’s physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.All the authors are highly grateful and acknowledge to the authority of the respective departments and institutions for their support in carrying out this research. The authors also express their sincere gratitude to the unknown referee for critically reviewing the manuscript and suggesting useful changes. This research was funded by "Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) del Gobierno de Canarias” (No. ProID2020010134), and o´Caja Canarias (Project No. 2019SP43).Peer reviewe

    Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes

    Get PDF
    Piper betle L. (synonym: Piper betel Blanco), or betel vine, an economically and medicinally important cash crop, belongs to the family Piperaceae, often known as the green gold. The plant can be found all over the world and is cultivatedprimarily in South East Asian countries for its beautiful glossy heart-shaped leaves, which are chewed or consumed as betelquidand widely used in Chinese and Indian folk medicine, as carminative, stimulant,astringent, against parasitic worms, conjunctivitis, rheumatism, wound, etc., andis also used for religious purposes. Hydroxychavicol is the most important bioactive compound among the wide range of phytoconstituents found in essential oil and extracts. The pharmacological attributes of P. betle are antiproliferation, anticancer, neuropharmacological, analgesic, antioxidant, antiulcerogenic, hepatoprotective, antifertility, antibacterial, antifungal and many more. Immense attention has been paid to nanoformulations and their applications. The application of P. betle did not show cytotoxicity in preclinical experiments, suggesting that it could serve as a promising therapeutic candidate for different diseases. The present review comprehensively summarizes the botanical description, geographical distribution, economic value and cultivation, ethnobotanical uses, preclinical pharmacological properties with insights of toxicological, clinical efficacy, and safety of P. betle. The findings suggest that P. betle represents an orally active and safe natural agent that exhibits great therapeutic potential for managing various human medical conditions. However, further research is needed to elucidate its underlying molecular mechanisms of action, clinical aspects, structure–activity relationships, bioavailability and synergistic interactions with other drugs.This research was funded by projects APOGEO (Cooperation Program INTERREG-MAC 2014–2020, with European Funds for Regional Development-FEDER, ‘Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) del Gobierno de Canarias’ (project ProID2020010134), and CajaCanarias (project 2019SP43).Peer reviewe

    Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis

    Get PDF
    Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar
    corecore