27 research outputs found
Fractals for minimalists
The aim of this note is to present an elementary way to fractals which completely avoids advanced
analysis and uses purely naive set theory. The approach relies on fixed point methods, where the role
of the Banach Contraction Principle is replaced by a slightly improved version of the Knaster--Tarski
Fixed Point Theorem
Hutchinson without Blaschke: An alternative way to fractals
The original approach of Hutchinson to fractals considers the defining equation as a fixed point problem,
and then applies the Banach Contraction Principle. To do this, the Blaschke Completeness Theorem is essential.
Avoiding Blaschke's result, this note presents an alternative way to fractals via the Kuratowski noncompactness
measure. Moreover, our technique extends the existence part of Hutchinson's Theorem to condensing maps instead
of contractions
Support theorems for generalized monotone functions
This note presents a complete solution of the support problem for functions that are generalized monotone in the sense of Beckenbach. The key tool of the proof is Tornheim's uniform convergence theorem. As applications, we improve some known support results and give an abstract version of the Hermite--Hadamard inequality
Generalized fractals in semimetric spaces
The aim of the present paper is to extend the classical fractal theory using condensing maps and generalized contractions of semimetric spaces. Our method is independent from the approach of Hutchinson: It is based on the Kuratowski measure of noncompactness and avoids completely the Blaschke Completeness Theorem
Monoton leképezések fixpontjai 1
A KöMaL egy rĂ©gi száma pontverseny kĂvĂĽli problĂ©makĂ©nt közölte a Knaster--Tarski-fĂ©le fixponttĂ©telt.
Cikkünkben elsőként fölidézzük a problémát, majd bemutatjuk egyik legfontosabb, halmazelmélethez kötődő
alkalmazását. Ezáltal egyben bepillantást kĂvánunk adni a számosságaritmetika lenyűgözĹ‘en szĂ©p,
meglepetésekkel teli világába is
Monoton leképezések fixpontjai 2
A fraktálokat szokás leképezéscsaládok invariáns halmazainak tekinteni. Hutchinson nevezetes fraktáltétele is ezt veszi alapul,
mivel ez az Ă©rtelmezĂ©s kaput nyit a fixponttĂ©telek mĂłdszerei elĹ‘tt. CĂ©lunk Hutchinson eredeti megközelĂtĂ©sĂ©nek egyszerűsĂtett
formában törtĂ©nĹ‘ bemutatása. Az egyszerűsĂtĂ©st a Knaster--Tarski-fĂ©le fixponttĂ©tel Ă©lesĂtett változata biztosĂtja