13 research outputs found

    An overview of LCS research from 2021 to 2022

    Get PDF

    An overview of LCS research from 2020 to 2021

    Get PDF

    Evaluation of silica-coated insect proof nets for the control of Aphis fabae, Sitophilus oryzae, and Tribolium confusum

    No full text
    Insect proof nets are widely used in agriculture as mechanical and physical barriers to regulate pest populations in a greenhouse. However, their integration in the greenhouse ventilation openings is highly associated with the decrease of air flow and the adequate ventilation. Thus, there is need for alternative pest management tools that do not impair adequate ventilation. In the present study, we tested four net formulations of relatively large mesh size coated with SiO2 nanoparticles, namely, ED3, ED3-P, ED5, and ED5-P to evaluate their insecticidal properties against adults of Aphis fabae and Sitophilus oryzae and larvae of Tribolium confusum. ED3 and ED5 nets were coated with SiO2 nanoparticles of different diameter, while in the case of ED3-P and ED5-P, paraffin was added to increase the mass of the deposited particles on the net’s surface. In the first series of bioassays, the knockdown and mortality rates of these species were evaluated after exposure to the aforementioned net formulations for 5, 10, 15, 20, 25, 30, 60, 90, and 180 min. In the second series of bioassays, knockdown and mortality of these species were recorded after 1, 7, and 10 days of post-exposure to the nets for different time intervals (15, 30, and 60 min). Based on our results, all nets significantly affected A. fabae, since all insects were dead at the 1-day post-exposure period to the silica-treated nets. Conversely, at the same interval, no effect on either S. oryzae adults or T. confusum larvae was observed. However, in the case of S. oryzae, the efficacy of all nets reached 100% 7 days after the exposure, even for adults that had been initially exposed for 15 min to the treated nets. Among the species tested, T. confusum larvae exhibited the lowest mortality rate, which did not exceed 34% at the 10 days of post-exposure interval. Our work underlines the efficacy of treated nets in pest management programs, under different application scenarios, at the pre-and post-harvest stages of agricultural commodities. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Simultaneous Effect of Ultraviolet Radiation and Surface Modification on the Work Function and Hole Injection Properties of ZnO Thin Films

    Get PDF
    The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Optically switchable organic light-emitting transistors

    Get PDF
    International audienceOrganic light-emitting transistors are pivotal components for emerging opto- and nanoelectronics applications, such as logic circuitries and smart displays. Within this technology sector, the integration of multiple functionalities in a single electronic device remains the key challenge. Here we show optically switchable organic light-emitting transistors fabricated through a judicious combination of light-emitting semiconductors and photochromic molecules. Irradiation of the solution-processed films at selected wavelengths enables the efficient and reversible tuning of charge transport and electroluminescence simultaneously, with a high degree of modulation (on/off ratios up to 500) in the three primary colours. Different emitting patterns can be written and erased through a non-invasive and mask-free process, on a length scale of a few micrometres in a single device, thereby rendering this technology potentially promising for optically gated highly integrated full-colour displays and active optical memory

    Synthesis and Diastereoselective Reactions of N

    No full text

    Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cycloaddition of Azomethine Ylides

    No full text
    corecore