86 research outputs found

    Nondisjunction of a Single Chromosome Leads to Breakage and Activation of DNA Damage Checkpoint in G2

    Get PDF
    The resolution of chromosomes during anaphase is a key step in mitosis. Failure to disjoin chromatids compromises the fidelity of chromosome inheritance and generates aneuploidy and chromosome rearrangements, conditions linked to cancer development. Inactivation of topoisomerase II, condensin, or separase leads to gross chromosome nondisjunction. However, the fate of cells when one or a few chromosomes fail to separate has not been determined. Here, we describe a genetic system to induce mitotic progression in the presence of nondisjunction in yeast chromosome XII right arm (cXIIr), which allows the characterisation of the cellular fate of the progeny. Surprisingly, we find that the execution of karyokinesis and cytokinesis is timely and produces severing of cXIIr on or near the repetitive ribosomal gene array. Consequently, one end of the broken chromatid finishes up in each of the new daughter cells, generating a novel type of one-ended double-strand break. Importantly, both daughter cells enter a new cycle and the damage is not detected until the next G2, when cells arrest in a Rad9-dependent manner. Cytologically, we observed the accumulation of damage foci containing RPA/Rad52 proteins but failed to detect Mre11, indicating that cells attempt to repair both chromosome arms through a MRX-independent recombinational pathway. Finally, we analysed several surviving colonies arising after just one cell cycle with cXIIr nondisjunction. We found that aberrant forms of the chromosome were recovered, especially when RAD52 was deleted. Our results demonstrate that, in yeast cells, the Rad9-DNA damage checkpoint plays an important role responding to compromised genome integrity caused by mitotic nondisjunction

    The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair

    Get PDF
    In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent

    The Candida albicans Ku70 Modulates Telomere Length and Structure by Regulating Both Telomerase and Recombination

    Get PDF
    The heterodimeric Ku complex has been shown to participate in DNA repair and telomere regulation in a variety of organisms. Here we report a detailed characterization of the function of Ku70 in the diploid fungal pathogen Candida albicans. Both ku70 heterozygous and homozygous deletion mutants have a wild-type colony and cellular morphology, and are not sensitive to MMS or UV light. Interestingly, we observed complex effects of KU70 gene dosage on telomere lengths, with the KU70/ku70 heterozygotes exhibiting slightly shorter telomeres, and the ku70 null strain exhibiting long and heterogeneous telomeres. Analysis of combination mutants suggests that the telomere elongation in the ku70 null mutant is due mostly to unregulated telomerase action. In addition, elevated levels of extrachromosomal telomeric circles were detected in the null mutant, consistent with activation of aberrant telomeric recombination. Altogether, our observations point to multiple mechanisms of the Ku complex in telomerase regulation and telomere protection in C. albicans, and reveal interesting similarities and differences in the mechanisms of the Ku complex in disparate systems

    A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana

    Get PDF
    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes

    The Yeast Pif1 Helicase Prevents Genomic Instability Caused by G-Quadruplex-Forming CEB1 Sequences In Vivo

    Get PDF
    In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Δ cells. Hence, we conclude that CEB1 instability in pif1Δ cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences

    Sgs1 and Exo1 Redundantly Inhibit Break-Induced Replication and De Novo Telomere Addition at Broken Chromosome Ends

    Get PDF
    In budding yeast, an HO endonuclease-inducible double-strand break (DSB) is efficiently repaired by several homologous recombination (HR) pathways. In contrast to gene conversion (GC), where both ends of the DSB can recombine with the same template, break-induced replication (BIR) occurs when only the centromere-proximal end of the DSB can locate homologous sequences. Whereas GC results in a small patch of new DNA synthesis, BIR leads to a nonreciprocal translocation. The requirements for completing BIR are significantly different from those of GC, but both processes require 5′ to 3′ resection of DSB ends to create single-stranded DNA that leads to formation of a Rad51 filament required to initiate HR. Resection proceeds by two pathways dependent on Exo1 or the BLM homolog, Sgs1. We report that Exo1 and Sgs1 each inhibit BIR but have little effect on GC, while overexpression of either protein severely inhibits BIR. In contrast, overexpression of Rad51 markedly increases the efficiency of BIR, again with little effect on GC. In sgs1Δ exo1Δ strains, where there is little 5′ to 3′ resection, the level of BIR is not different from either single mutant; surprisingly, there is a two-fold increase in cell viability after HO induction whereby 40% of all cells survive by formation of a new telomere within a few kb of the site of DNA cleavage. De novo telomere addition is rare in wild-type, sgs1Δ, or exo1Δ cells. In sgs1Δ exo1Δ, repair by GC is severely inhibited, but cell viaiblity remains high because of new telomere formation. These data suggest that the extensive 5′ to 3′ resection that occurs before the initiation of new DNA synthesis in BIR may prevent efficient maintenance of a Rad51 filament near the DSB end. The severe constraint on 5′ to 3′ resection, which also abrogates activation of the Mec1-dependent DNA damage checkpoint, permits an unprecedented level of new telomere addition

    Ancient and Recent Adaptive Evolution of Primate Non-Homologous End Joining Genes

    Get PDF
    In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLλ, and CtIP. Analysis of human polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Polλ; and residues under positive selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be driving the surprisingly rapid evolution of these critical genes

    Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes

    Get PDF
    Homologous recombination is required for maintaining genomic integrity by functioning in high-fidelity repair of DNA double-strand breaks and other complex lesions, replication fork support, and meiotic chromosome segregation. Joint DNA molecules are key intermediates in recombination and their differential processing determines whether the genetic outcome is a crossover or non-crossover event. The Holliday model of recombination highlights the resolution of four-way DNA joint molecules, termed Holliday junctions, and the bacterial Holliday junction resolvase RuvC set the paradigm for the mechanism of crossover formation. In eukaryotes, much effort has been invested in identifying the eukaryotic equivalent of bacterial RuvC, leading to the discovery of a number of DNA endonucleases, including Mus81–Mms4/EME1, Slx1–Slx4/BTBD12/MUS312, XPF–ERCC1, and Yen1/GEN1. These nucleases exert different selectivity for various DNA joint molecules, including Holliday junctions. Their mutant phenotypes and distinct species-specific characteristics expose a surprisingly complex system of joint molecule processing. In an attempt to reconcile the biochemical and genetic data, we propose that nicked junctions constitute important in vivo recombination intermediates whose processing determines the efficiency and outcome (crossover/non-crossover) of homologous recombination
    corecore