8 research outputs found

    Human cerebrovascular function in health and disease: insights from integrative approaches

    No full text
    Abstract Background The marked increase in the size of the brain, and consequently, in neural processing capability, throughout human evolution is the basis of the higher cognitive function in humans. However, greater neural, and thus information processing capability, comes at a significant metabolic cost; despite its relatively small size, the modern human brain consumes almost a quarter of the glucose and oxygen supply in the human body. Fortunately, several vascular mechanisms ensure sufficient delivery of glucose and oxygen to the active neural tissue (neurovascular coupling), prompt removal of neural metabolic by-products (cerebral vasoreactivity), and constant global blood supply despite daily variations in perfusion pressure (cerebral autoregulation). The aim of this review is to provide an integrated overview of the available data on these vascular mechanisms and their underlying physiology. We also briefly review modern experimental approaches to assess these mechanisms in humans, and further highlight the importance of these mechanisms for humans’ evolutionary success by providing examples of their healthy adaptations as well as pathophysiological alterations. Conclusions Data reviewed in this paper demonstrate the importance of the cerebrovascular function to support humans’ unique ability to form new and different interactions with each other and their surroundings. This highlights that there is much insight into the neural and cognitive functions that could be gleaned from interrogating the cerebrovascular function

    Data from an International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset)

    No full text
    This large, international dataset contains survey responses from N = 12,570 students from 100 universities in 35 countries, collected in 21 languages. We measured anxieties (statistics, mathematics, test, trait, social interaction, performance, creativity, intolerance of uncertainty, and fear of negative evaluation), self-efficacy, persistence, and the cognitive reflection test, and collected demographics, previous mathematics grades, self-reported and official statistics grades, and statistics module details. Data reuse potential is broad, including testing links between anxieties and statistics/mathematics education factors, and examining instruments’ psychometric properties across different languages and contexts. Data and metadata are stored on the Open Science Framework website (https://osf.io/mhg94/)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore