37 research outputs found
Effect of Microwave Frying on Acrylamide Generation, Mass Transfer, Color, and Texture in French Fries
[EN] The objective of this work was to evaluate the effect of microwave power on acrylamide generation, as well as moisture and oil fluxes and quality attributes of microwave-fried potatoes. Concretely, 25 g of potato strips, in 250 mL of fresh oil (at room temperature), were subjected to three different microwave powers (315, 430, and 600 W) in a conventional microwave oven. Microwave frying resulted in an acrylamide reduction ranged from 37 to 83% compared to deep-oil frying. Microwave-fried French fries presented lower moisture and higher fat content than deep-oil fried potatoes. Concretely, microwave-fried potatoes presented values of moisture and texture more similar to potato chips than French fries, nonetheless with lower fat levels (less than 20 g/100 g wb) and acrylamide content (lower than 100 ¿g/kg wb) at the reference time. This study presents an alternative way of frying to address the production of healthier potato chips.The authors would like to thank the Universitat Politecnica de Valencia for the PhD scholarship given to Mariola Sansano Tomas.Sansano, M.; De Los Reyes Cánovas, R.; Andrés Grau, AM.; Heredia Gutiérrez, AB. (2018). Effect of Microwave Frying on Acrylamide Generation, Mass Transfer, Color, and Texture in French Fries. Food and Bioprocess Technology. 11(10):1934-1939. doi:10.1007/s11947-018-2144-zS193419391110AACC. (1995). Approved methods of the American association of cereal chemists (9th ed.). St. Paul: The Association.Adedeji, A. A., Ngadi, M. O., & Raghavan, G. S. V. (2009). Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets. Journal of Food Engineering, 91(1), 146–153.Ahrné, L., Andersson, C.-G., Floberg, P., Rosén, J., & Lingnert, H. (2007). Effect of crust temperature and water content on acrylamide formation during baking of white bread: steam and falling temperature baking. LWT-Food Science and Technology, 40(10), 1708–1715.Amrein, T. M., Limacher, A., Conde-Petit, B., Amadò, R., & Escher, F. (2006). Influence of thermal processing conditions on acrylamide generation and Browning in a potato model system. Journal of Agricultural and Food Chemistry, 54(16), 5910–5916.Andrés, A., Arguelles, Á., Castelló, M. L., & Heredia, A. (2013). Mass transfer and volume changes in French fries during air frying. Food and Bioprocess Technology, 6(8), 1917–1924.Barutcu, I., Sahin, S., & Sumnu, G. (2009). Acrylamide formation in different batter formulations during microwave frying. LWT - Food Science and Technology, 42(1), 17–22.Belgin Erdoǧdu, S., Palazoǧlu, T. K., Gökmen, V., Şenyuva, H. Z., & Ekiz, H. İ. (2007). Reduction of acrylamide formation in French fries by microwave pre-cooking of potato strips. Journal of the Science of Food and Agriculture, 87(1), 133–137.Biedermann, M., Noti, A., Biedermann-Brem, S., Mozzetti, V., & GROB, K. (2002). Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 93(6), 668–687.Bråthen, E., & Knutsen, S. H. (2005). Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chemistry, 92(4), 693–700.Buffler, C. R. (1993). Microwave cooking and processing: Engineering fundamentals for the food scientist. (A. Books, Ed.). New York: Van Nostrand Reinhold.Datta, A. K. (1990). Heat and mass transfer in the microwave processing of food. Chemical Engineering Progress, 86(6), 47–53.Datta, A. K. (2001). Handbook of microwave technology for food application. CRC Press.De los Reyes, R., Heredia, A., Fito, P., De los Reyes, E., & Andrés, A. (2007). Dielectric spectroscopy of osmotic solutions and osmotically dehydrated tomato products. Journal of Food Engineering, 80(4), 1218–1225. 2.Granda, C., & Moreira, R. G. (2005). Kinetics of acrylamide formation during traditional and vacuum frying of potato chips. Journal of Food Process Engineering, 28(5), 478–493.Lizhi, H., Toyoda, K., & Ihara, I. (2008). Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. Journal of Food Engineering, 88(2), 151–158.Oztop, M. H., Sahin, S., & Sumnu, G. (2007). Optimization of microwave frying of potato slices by using Taguchi technique. Journal of Food Engineering, 79(1), 83–91.Parikh, A., & Takhar, P. S. (2016). Comparison of microwave and conventional frying on quality attributes and fat content of potatoes. Journal of Food Science, 81(11), E2743–E2755.Pedreschi, F., & Moyano, P. (2005). Oil uptake and texture development in fried potato slices. Journal of Food Engineering, 70(4), 557–563.Sahin, S., Sumnu, G., & Oztop, M. H. (2007). Effect of osmotic pretreatment and microwave frying on acrylamide formation in potato strips. Journal of the Science of Food and Agriculture, 87(15), 2830–2836. https://doi.org/10.1002/jsfa.3034 .Sansano, M., Juan-Borrás, M., Escriche, I., Andrés, A., & Heredia, A. (2015). Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. Journal of Food Science, 80(5), 1120–1128.Sansano, M., Heredia, A., Peinado, I., & Andrés, A. (2017). Dietary acrylamide: What happens during digestion. Food Chemistry, 237, 58–64.Schiffmann, R. (2017). 7 - Microwave-assisted frying. In The microwave processing of foods (2nd edn, pp. 142–151). Sawston: Woodhead Publishing.Tang, J., Feng, H., & Lau, M. (2002). Microwave heating in food processing. In X.Young, J. Tang, C. Zhang, & W. Xin (Eds.), Advances in Agricultural Engineering (pp. 1–44). New York: Scientific Press.Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998–5006.Taubert, D., Harlfinger, S., Henkes, L., Berkels, R., & Schömig, E. (2004). Influence of processing parameters on acrylamide formation during frying of potatoes. Journal of Agricultural and Food Chemistry, 52(9), 2735–2739.Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88(1), 1–18
Recommended from our members
Investigation of surface properties of quince seed extract as a novel polymeric surfactant
In recent years, there is a growing trend from both academia and the industry towards the use of “clean-labeled” ingredients obtained from renewable resources. Proteins and polysaccharides, in particular, are becoming increasingly popular as alternatives to already well-established synthetic surfactants. Quince seeds are a relatively novel hydrocolloid source that has recently raised interest among researchers due to their strong surface activity and viscosity-enhancing properties. This study investigates quince seed extract's surface properties (dynamic surface tension and dilatational surface rheology) and how they differ with varying concentrations (between 0.01% and 1%), pH's (3, 7, 9, and 11), and ionic strengths (0.1, 0.3, 0.5 M NaCl). By QSE addition alone, equilibrium surface tension could be lowered to ∼36 mN/m, which is lower than the lowest ST that can be achieved with many other surface active biopolymers. Critical aggregation concentration (CAC) was identified as 0.165% w/v, meaning a relatively low extract concentration was sufficient to provide complete surface coverage. Dynamic surface tension curves revealed almost instantaneous polymer adsorption for concentrations over 0.01% w/v, which demonstrates the strong potential of the gum as a foaming agent. As solution pHs get further from the isoelectric point of QSE proteins, the rate of adsorption of QSE molecules onto the interface and the equilibrium surface pressures increased. Surface properties were also significantly affected by the ionic strength of the medium, with eq. STs decreasing with increasing QSE concentration. pH and ionic strength induced conformational changes in the interfacial layer and also led to local minima and maxima in dilatational elastic and loss modulus within ranges studied. Considering these findings, QSE is a very promising natural alternative to other polymeric surfactants and stabilizers currently used in the food, cosmetic and pharmaceutical industries
Recommended from our members
Examination of interfacial properties of quince seed extract on a sunflower oil-water interface
Seeds of the plant quince are a natural hydrocolloid source whose extract has shown promising results in stabilizing emulsions. The study aims to discover how quince seed extract's interfacial properties (dynamic surface tension and dilatational surface rheology) on an oil–water interface change with varying concentrations (between 0.01% and 1%), pH's (3, 7, and 11), and ionic strengths (0.1, 0.3, 0.5 M NaCl). The lowest concentration that yielded a statistically significant drop in interfacial was found as 0.02 % w/v. QSE dropped interfacial tension down to 16 mN/m at the highest concentration examined (1% w/v). Critical aggregation concentration (CAC) was identified as 0.23 % w/v, which is relatively low compared to hydrocolloids of similar nature. In the end, QSE was demonstrated to be an effective emulsion stabilizer and possesses some unique properties that help it distinguish itself from other macromolecular emulsifiers commonly employed in the food, chemical, and pharmaceutical industries
Towards experimental and modeling study of heat transfer performance of water- SiO2 nanofluid in quadrangular cross-section channels
201907 bcrcVersion of RecordPublishe