2 research outputs found

    THE CASE FOR THE GLOBAL STRATOTYPE SECTION AND POINT(GSSP) FOR THE BASE OF THE NORIAN STAGE

    Get PDF
    The Norian Stage is the longest stage in the Phanerozoic, and some members of the boundary working group have been evaluating suitable Carnian-Norian boundary sections for roughly two decades. This has identified two possible candidate boundary sections, at Black Bear Ridge (British Columbia, Canada) and Pizzo Mondello (Sicily, Italy). After a formal voting procedure within the working group, ending on the 26th July, 2021, the Pizzo Mondello section was selected as the global stratotype section and point for the base of the Norian. We evaluated the global correlation potential of the two proposed primary markers, the conodont Metapolygnathus parvus and the ‘flat-clam’ Halobia austriaca. Secondary markers were also evaluated around these boundary datums for correlation potential, and the veracity of the proposed sections for GSSP status. Data and arguments for the proposed sections and datums are presented here. Through a two-stage process of option elimination in voting, conforming with ICS guidelines, the working group decided by 60% majority to propose that the first occurrence datum of Halobia austriaca in the Pizzo Mondello section at the base of bed FNP135A should become the ‘golden spike’ for the base of the Norian. A secondary biotic marker for this boundary is the first occurrence of Primatella (Carnepigondolella) gulloae, in sample NA43, ca. 0 m below FNP135A, and the FA of Dimorphites noricus (sample NA42.1) ca. 3.5 m above bed FNP135 (indicating the first subzone of the Jandianus Zone). The best physical secondary marker is the magnetozone PM5n with the proposed boundary ca.40% through the thickness of PM5n. Strengths of the chosen datum are: 1) it also maintains historical priority for ammonoid zonations, which had placed the base Norian near to this level in Europe, North America and probably NE Asia; 2) Halobia austriaca is widely distributed in all paleolatitudes and is a long-established taxon

    The Maliac Ocean: the origin of the Tethyan Hellenic ophiolites

    No full text
    International audienceThe Hellenides, part of the Alpine orogeny in Greece, are rich in ophiolitic units. These ophiolites and associated units emplaced during Jurassic obduction, testify for the existence of one, or several, Tethyan oceanic realms. The paleogeography of these oceanic areas has not been precisely described. However, all the authors now agree on the presence of a main Triassic-Jurassic ocean on the eastern side of the Pelagonian zone (Vardar Domain). We consider that this Maliac Ocean is the most important ocean in Greece and Albania. Here, we limit the detailed description of the Maliac Ocean to the pre-convergence period of approximately 70 Ma between the Middle Triassic rifting to the Middle Jurassic convergence period. A quick overview on the destiny of the different parts of the Maliac Ocean during the convergence period is also proposed. The studied exposures allow to reconstruct: (1) the Middle to Late Triassic Maliac oceanic lithosphere, corresponding to the early spreading activity at a Mid-Oceanic Ridge; (2) the Western Maliac Margin, widely exposed in the Othris and Argolis areas; (3) the Eastern-Maliac Margin in the eastern Vardar domain (Peonias and Paikon zones). We established the following main characteristics of the Maliac Ocean: (1) the Middle Triassic rifting marked by a rapid subsidence and volcanism seems to be short-lived (few My); (2) the Maliac Lithosphere is only represented by Middle to Late Triassic units, especially the Fourka unit, composed of WPB-OIB and MORB pillow-lavas, locally covered by a pelagic Middle Triassic to Middle Jurassic sedimentary cover; (3) the Western Margin is the most complete and our data allow to distinguish a proximal and a deeper distal margin; (4) the evolution of the Eastern Margin (Peonias and Paikon series) is similar to that of the W-Margin, except for its Jurassic terrigenous sediments, while the proximal W-Margin was dominated by calcarenites; (5) we show that the W- and E-margins are not Volcanic Passive Margins; and (6) during the Middle Jurassic convergence period, the Eastern Margin became an active margin and both margins were affected by obduction processes
    corecore