3 research outputs found

    Kinematic landslide monitoring with Kalman filtering

    No full text
    International audienceLandslides are serious geologic disasters that threat human life and property in every country. In addition, landslides are one of the most important natural phenomena, which directly or indirectly affect countries' economy. Turkey is also the country that is under the threat of landslides. Landslides frequently occur in all of the Black Sea region as well as in many parts of Marmara, East Anatolia, and Mediterranean regions. Since these landslides resulted in destruction, they are ranked as the second important natural phenomenon that comes after earthquake in Turkey. In recent years several landslides happened after heavy rains and the resulting floods. This makes the landslide monitoring and mitigation techniques an important study subject for the related professional disciplines in Turkey. The investigations on surface deformations are conducted to define the boundaries of the landslide, size, level of activity and direction(s) of the movement, and to determine individual moving blocks of the main slide. This study focuses on the use of a kinematic deformation analysis based on Kalman Filtering at a landslide area near Istanbul. Kinematic deformation analysis has been applied in a landslide area, which is located to the north of Istanbul city. Positional data were collected using GPS technique. As part of the study, conventional static deformation analysis methodology has also been applied on the same data. The results and comparisons are discussed in this paper

    New findings on the effects of the Izmit M-w=7.4 and Duzce Mw=7.2 earthquakes

    No full text
    WOS: 000287799500003The 17 August 1999 Izmit M-w = 7.4 and the 12 November 1999 Duzce M-w = 7.2 earthquakes caused a 150 km long surface rupture in the western part of the North Anatolian Fault. The coseismic slips along the fault line and the trace of the surface ruptures were studied in detail in Barka (1999), Reilinger et al. (2000), Cakir et al. (2003a, b) and Ergintav (2009) after the earthquakes. However, the basin to the east of Sapanca Lake was a black hole for all investigations because there was no geodetic network and no significant deformation that could be obtained by using InSAR techniques. In this study, findings on the abovementioned basin have been reinterpreted through a GPS network newly explored. This interpretation shows coseismic slips of between 2-3 m, and links the surface rupture to the main branch of the North Anatolian Fault (NAF) in the east Sapanca basin
    corecore