583 research outputs found

    Solvent mediated interactions between model colloids and interfaces: A microscopic approach

    Get PDF
    We determine the solvent mediated contribution to the effective potentials for model colloidal or nano- particles dispersed in a binary solvent that exhibits fluid-fluid phase separation. Using a simple density functional theory we calculate the density profiles of both solvent species in the presence of the `colloids', which are treated as external potentials, and determine the solvent mediated (SM) potentials. Specifically, we calculate SM potentials between (i) two colloids, (ii) a colloid and a planar fluid-fluid interface, and (iii) a colloid and a planar wall with an adsorbed wetting film. We consider three different types of colloidal particles: colloid A which prefers the bulk solvent phase rich in species 2, colloid C which prefers the solvent phase rich in species 1, and `neutral' colloid B which has no strong preference for either phase, i.e. the free energies to insert the colloid into either of the coexisting bulk phases are almost equal. When a colloid which has a preference for one of the two solvent phases is inserted into the disfavored phase at statepoints close to coexistence a thick adsorbed `wetting' film of the preferred phase may form around the colloids. The presence of the adsorbed film has a profound influence on the form of the SM potentials.Comment: 17 Pages, 13 Figures. Accepted for publication in Journal of Chemical Physic

    Green Nanochemistry:Metal Oxide Nanoparticles and Porous Thin Films from Bare Metal Powders

    Get PDF
    Cataloged from PDF version of article.A universal, simple, robust, widely applicable and cost-effective aqueous process is described for a controlled oxidative dissolution process of micrometer-sized metal powders to form high-purity aqueous dispersions of colloidally stable 3-8 nm metal oxide nanoparticles. Their utilization for making single and multilayer optically transparent high-surface-area nanoporous films is demonstrated. This facile synthesis is anticipated to find numerous applications in materials science, engineering, and nanomedicine. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    From Bare Metal Powders to Colloidally Stable TCO Dispersions and Transparent Nanoporous Conducting Metal Oxide Thin Films

    Get PDF
    Cataloged from PDF version of article.A simple, green, robust, widely applicable, multi-gram and cost-effective 'one-pot' synthesis of aqueous dispersions of colloidally stable 3-6 nm TCO NPs using bare metal powder precursors is described, and their utilization for making TCO high surface area nanoporous films is also demonstrated, which speaks well for their usage in a wide range of possible processes and devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Spatially Confined Redox Chemistry in Periodic Mesoporous Hydridosilica-Nanosilver Grown in Reducing Nanopores

    Get PDF
    Cataloged from PDF version of article.Periodic mesoporous hydridosilica, PMHS, is shown for the first time to function as both a host and a mild reducing agent toward noble metal ions. In this archetypical study, PMHS microspheres react with aqueous Ag(I) solutions to form Ag(0) nanopartides housed in different pore locations of the mesostructure. The dominant reductive nucleation and growth process involves groups located within the pore walls and yields molecular scale Ag(0) nanoclusters trapped and stabilized in the pore walls of the PMHS microspheres that emit orange-red photoluminescence. Lesser processes initiated with pore surface SiH groups produce some larger spherical and worm-shaped Ag(0) nanoparticles within the pore voids and on the outer surfaces of the PMHS microspheres. The intrinsic reducing power demonstrated in this work for the pore walls of PMHS speaks well for a new genre of chemistry that benefits from the mesoscopic confinement of Si-H groups

    Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst

    Get PDF
    To achieve substantial reductions in CO2 emissions, catalysts for the photoreduction of CO2 into value‐added chemicals and fuels will most likely be at the heart of key renewable‐energy technologies. Despite tremendous efforts, developing highly active and selective CO2 reduction photocatalysts remains a great challenge. Herein, a metal oxide heterostructure engineering strategy that enables the gas‐phase, photocatalytic, heterogeneous hydrogenation of CO2 to CO with high performance metrics (i.e., the conversion rate of CO2 to CO reached as high as 1400 ”mol g cat−1 h−1) is reported. The catalyst is comprised of indium oxide nanocrystals, In2O3−x(OH)y, nucleated and grown on the surface of niobium pentoxide (Nb2O5) nanorods. The heterostructure between In2O3−x(OH)y nanocrystals and the Nb2O5 nanorod support increases the concentration of oxygen vacancies and prolongs excited state (electron and hole) lifetimes. Together, these effects result in a dramatically improved photocatalytic performance compared to the isolated In2O3−x(OH)y material. The defect optimized heterostructure exhibits a 44‐fold higher conversion rate than pristine In2O3−x(OH)y. It also exhibits selective conversion of CO2 to CO as well as long‐term operational stability

    Periodic Mesoporous Hydridosilica-Synthesis of an "Impossible" Material and its Thermal Transformation into Brightly Photoluminescent Periodic Mesoporous Nanocrystal Silicon-Silica Composite

    Get PDF
    Cataloged from PDF version of article.There has always been a fascination with "impossible" compounds, ones that do not break any rules of chemical bonding or valence but whose structures are unstable and do not exist. This instability can usually be rationalized in terms of chemical or physical restrictions associated with valence electron shells, multiple bonding, oxidation states, catenation, and the inert pair effect. In the pursuit of these "impossible" materials, appropriate conditions have sometimes been found to overcome these instabilities and synthesize missing compounds, yet for others these tricks have yet to be uncovered and the materials remain elusive. In the scientifically and technologically important field of periodic mesoporous silicas (PMS), one such "impossible" material is periodic mesoporous hydridosilica (meso-HSiO1.5). It is the archetype of a completely interrupted silica open framework material: its pore walls are comprised of a three-connected three-dimensional network that should be so thermodynamically unstable that any mesopores present would immediately collapse upon removal of the mesopore template. In this study we show that meso-HSiO1.5 can be synthesized by template-directed self-assembly of HSi(OEt)3 under aqueous acid-catalyzed conditions and after template extraction remains stable to 300 °C. Above this temperature, bond redistribution reactions initiate a metamorphic transformation which eventually yields periodic mesoporous nanocrystalline silicon-silica, meso-ncSi/SiO2, a nanocomposite material in which brightly photoluminescent silicon nanocrystallites are embedded within a silica matrix throughout the mesostructure. The integration of the properties of silicon nanocrystallinity with silica mesoporosity provides a wealth of new opportunities for emerging nanotechnologies. © 2011 American Chemical Society
    • 

    corecore