5 research outputs found

    EEF2K (eukaryotic elongation factor 2 kinase)

    Get PDF
    Eukaryotic elongation factor 2 kinase (eEF-2K) (also known as Calmodulin (CaM)-dependent elongation factor 2 kinase,CaMKIII) is an unusual calcium/calmodulin (Ca2+/CaM)-dependent Threonin kinase that controls the rate of the elongation phase of protein synthesis through phosphorylating elongation factor 2 (eEF2) (Nairn et al., 1985; Ryazanov 1987; Mitsui et al., 1993; Redpath et al., 1993). Phosphorylation of eEF2 on Thr-56 disrupts the interaction between eEF-2 and the ribosome, leading to reduced protein synthesis. eEF-2K is regulated by phosphorylation by multiple signaling pathways and kinases at 11 different phosphorylation sides (Ryazanov et al., 1988; Carlberg et al., 1990; Abramczyk et al., 2011; Browne et al., 2004; Marshall et al., 2012; Chafouleas et al., 1981; Bowden et al., 2013). Hypoxia, nutrient deprivation and metabolic stress are all known to stimulate eEF-2K through activation of AMPK (Chafouleas et al., 1981).The activity of eEF-2K is increased in rapidly proliferating malignant cells and in cancer specimens, but is absent in normal adjacent tissues (Ashour et al., 2014b). eEF-2K promotes cell proliferation, invasion and tumorigenesis of some cancers. eEF-2K expression (mRNA) correlates with poor patient survival and prognosis (outcome) in some solid tumors, including breast , pancreatic cancer and glioblastoma (Meric-Bernstam et al., 2012). The activity of this kinase is increased in many cancers and may be a potential therapeutic target in some cance

    A high-throughput microfluidic rare cell enrichment system based on dielectrophoresis and filtering

    No full text
    In this study, a MEMS-based microfluidic device combining DEP-based cell manipulation with size-based filtration for the enrichment of CTCs from blood with high-throughput was developed. Positive-DEP (pDEP) force and the hydrodynamic force have been used to fine-tune the cell movement over the planar electrodes (sliding) at a high flow rate (30 mu l/min). While smaller sized RBCs passed through the gaps and were directed to the waste channels, cancer cells (K562 cells) were filtered and directed to the cancer cell outlet. A cell enrichment factor and depletion rate of RBCs were calculated as 1.45 and 60%, respectively

    A Novel Microfluidic Method Utilizing a Hydrofoil Structure to Improve Circulating Tumor Cell Enrichment: Design and Analytical Validation

    No full text
    Being one of the major pillars of liquid biopsy, isolation and characterization of circulating tumor cells (CTCs) during cancer management provides critical information on the evolution of cancer and has great potential to increase the success of therapies. In this article, we define a novel strategy to effectively enrich CTCs from whole blood based on size, utilizing a spiral microfluidic channel embedded with a hydrofoil structure at the downstream of the spiral channel. The hydrofoil increases the distance between the streams of CTCs and peripheral blood cells, which are already distributed about two focal axes by the spiral channel, thereby improving the resolution of the separation. Analytical validation of the system has been carried out using Michigan Cancer Foundation-7 (MCF7) breast cancer cell lines spiked into blood samples from healthy donors, and the performance of the system in terms of white blood cell (WBC) depletion, CTC recovery rate and cell viability has been shown in single or two-step process: by passing the sample once or twice through the microfluidic chip. Single step process yielded high recovery (77.1%), viable (84.7%) CTCs. When the collected cell suspension is re-processed by the same chip, recovery decreases to 65.5%, while the WBC depletion increases to 88.3%, improving the purity. Cell viability of >80% was preserved after two-step process. The novel microfluidic chip is a good candidate for CTC isolation applications requiring high recovery rate and viability, including functional downstream analyses for variety of cancer types. View Full-Text Keywords: circulating tumor cells; cancer; liquid biopsy; microfluidics; inertial particle focusin

    Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancerResearch in context

    No full text
    Background: Circulating miRNAs are known to play important roles in intercellular communication. However, the effects of exosomal miRNAs on cells are not fully understood. Methods: To investigate the role of exosomal miR-1246 in ovarian cancer (OC) microenvironment, we performed RPPA as well as many other in vitro functional assays in ovarian cancer cells (sensitive; HeyA8, Skov3ip1, A2780 and chemoresistant; HeyA8-MDR, Skov3-TR, A2780-CP20). Therapeutic effect of miR-1246 inhibitor treatment was tested in OC animal model. We showed the effect of OC exosomal miR-1246 uptake on macrophages by co-culture experiments. Findings: Substantial expression of oncogenic miR-1246 OC exosomes was found. We showed that Cav1 gene, which is the direct target of miR-1246, is involved in the process of exosomal transfer. A significantly worse overall prognosis were found for OC patients with high miR-1246 and low Cav1 expression based on TCGA data. miR-1246 expression were significantly higher in paclitaxel-resistant OC exosomes than in their sensitive counterparts. Overexpression of Cav1 and anti-miR-1246 treatment significantly sensitized OC cells to paclitaxel. We showed that Cav1 and multi drug resistance (MDR) gene is involved in the process of exosomal transfer. Our proteomic approach also revealed that miR-1246 inhibits Cav1 and acts through PDGFβ receptor at the recipient cells to inhibit cell proliferation. miR-1246 inhibitor treatment in combination with chemotherapy led to reduced tumor burden in vivo. Finally, we demonstrated that when OC cells are co-cultured with macrophages, they are capable of transferring their oncogenic miR-1246 to M2-type macrophages, but not M0-type macrophages. Interpretation: Our results suggest that cancer exosomes may contribute to oncogenesis by manipulating neighboring infiltrating immune cells. This study provide a new mechanistic therapeutic approach to overcome chemoresistance and tumor progression through exosomal miR-1246 in OC patients. Keywords: Exosome, oncomiR, miR-1246, Ovarian cancer, Cav1, P-g

    The Znf304-Integrin Axis Protects Against Anoikis In Cancer

    No full text
    Ovarian cancer (OC) is a highly metastatic disease, but no effective strategies to target this process are currently available. Here, an integrative computational analysis of the Cancer Genome Atlas OC data set and experimental validation identifies a zinc finger transcription factor ZNF304 associated with OC metastasis. High tumoral ZNF304 expression is associated with poor overall survival in OC patients. Through reverse phase protein array analysis, we demonstrate that ZNF304 promotes multiple proto-oncogenic pathways important for cell survival, migration and invasion. ZNF304 transcriptionally regulates beta 1 integrin, which subsequently regulates Src/focal adhesion kinase and paxillin and prevents anoikis. In vivo delivery of ZNF304 siRNA by a dual assembly nanoparticle leads to sustained gene silencing for 14 days, increased anoikis and reduced tumour growth in orthotopic mouse models of OC. Taken together, ZNF304 is a transcriptional regulator of beta 1 integrin, promotes cancer cell survival and protects against anoikis in OC.WoSScopu
    corecore