14 research outputs found
Prevalence of Dementia in Older Adults in Central and Eastern Europe: A Systematic Review and Meta-Analysis
Data on dementia prevalence in Europe are primarily based on studies from Western Europe. Central and Eastern European countries differ from Western European countries in their average income and other socioeconomic and health factors that are relevant for dementia risk. We, therefore, conducted a systematic review of population-based studies on prevalence of dementia in Central and Eastern Europe. We searched in electronic databases from the date of inception up to July 2019, updated in October 2020. We hand-searched references of included articles and contacted experts in each country to identify further articles. We combined studies by meta-analysis where possible. Ten population-based studies (n = 30,268) met inclusion criteria. We meta-analysed seven studies (n = 11,994). The selected studies were conducted across 5 countries with no studies identified for the vast majority of countries in this region. Prevalence of all-cause dementia was 6.7% (95% CI 5.1–8.2) in those aged 60 or over, and 7.1% (95% CI 5.1–9.2) in those aged 65 and over. Prevalence rates were similar to those in Western Europe, but are increasing over time, compared with the patterns of reduction in age-specific prevalence in Western Europe
Knowledge transfer within strategic partnerships: the case of HRM in the Brazilian motor industry supply chain
This paper investigates knowledge transfer (KT) of human resource management (HRM) across strategic partnerships in the Brazilian automotive industry, and the contextual factors impacting on KT within the supply chain. Case-study research in automotive companies and suppliers in Brazil is used to illustrate how in automotive industries, relationships with suppliers have traditionally been viewed as close, strategic partnerships, but over time, there has been a move towards more attenuated, supply chains, involving a shift towards more remote suppliers for basic components, and arms length relationships with them. In turn, this has impacted on how knowledge on HR has been transferred from manufacturers to suppliers. Both strategic partnerships and KT have been affected by internal drives towards cost cutting and talent retention, and external factors such as global competition through cheap imports, legislation, taxes, and unions. Evidence on the sometimes contradictory attitudes towards KT contributes towards the broader literatures on international HRM and KT in emerging economies, while the gradual unwinding of relationships has implications for policy and practice
What explains rare and conspicuous colours in a snail? A test of time-series data against models of drift, migration or selection
It is intriguing that conspicuous colour morphs of a prey species may be maintained at low frequencies alongside cryptic morphs. Negative frequency-dependent selection by predators using search images ('apostatic selection') is often suggested without rejecting alternative explanations. Using a maximum likelihood approach we fitted predictions from models of genetic drift, migration, constant selection, heterozygote advantage or negative frequency-dependent selection to time-series data of colour frequencies in isolated populations of a marine snail (Littorina saxatilis), re-established with perturbed colour morph frequencies and followed for >20 generations. Snails of conspicuous colours (white, red, banded) are naturally rare in the study area (usually <10%) but frequencies were manipulated to levels of ~50% (one colour per population) in 8 populations at the start of the experiment in 1992. In 2013, frequencies had declined to ~15-45%. Drift alone could not explain these changes. Migration could not be rejected in any population, but required rates much higher than those recorded. Directional selection was rejected in three populations in favour of balancing selection. Heterozygote advantage and negative frequency-dependent selection could not be distinguished statistically, although overall the results favoured the latter. Populations varied idiosyncratically as mild or variable colour selection (3-11%) interacted with demographic stochasticity, and the overall conclusion was that multiple mechanisms may contribute to maintaining the polymorphisms.Heredity advance online publication, 21 September 2016; doi:10.1038/hdy.2016.77
Biometric conversion factors as a unifying platform for comparative assessment of invasive freshwater bivalves
Invasive bivalves continue to spread and negatively impact freshwater ecosystems worldwide. As different metrics for body size and biomass are frequently used within the literature to standardise bivalve-related ecological impacts (e.g. respiration and filtration rates), the lack of broadly applicable conversion equations currently hinders reliable comparison across bivalve populations. To facilitate improved comparative assessment among studies originating from disparate geographical locations, we report body size and biomass conversion equations for six invasive freshwater bivalves (or species complex members) worldwide: Corbicula fluminea, C. largillierti, Dreissena bugensis, D. polymorpha, Limnoperna fortunei and Sinanodonta woodiana, and tested the reliability (i.e. precision and accuracy) of these equations. Body size (length, width and height) and biomass metrics of living-weight (LW), wet-weight (WW), dry-weight (DW), dry shell-weight (SW), shell free dry-weight (SFDW) and ash-free dry-weight (AFDW) were collected from a total of 44 bivalve populations located in Asia, the Americas and Europe. Relationships between body size and individual biomass metrics, as well as proportional weight-to-weight conversion factors, were determined. For most species, although inherent variation existed between sampled populations, body size directional measurements were found to be good predictors of all biomass metrics (e.g. length to LW, WW, SW or DW: R2 = 0.82–0.96), with moderate to high accuracy for mean absolute error (MAE): ±9.14%–24.19%. Similarly, narrow 95% confidence limits and low MAE were observed for most proportional biomass relationships, indicating high reliability for the calculated conversion factors (e.g. LW to AFDW; CI range: 0.7–2.0, MAE: ±0.7%–2.0%). Synthesis and applications. Our derived biomass prediction equations can be used to rapidly estimate the biologically active biomass of the assessed species, based on simpler biomass or body size measurements for a wide range of situations globally. This allows for the calculation of approximate average indicators that, when combined with density data, can be used to estimate biomass per geographical unit-area and contribute to quantification of population-level effects. These general equations will support meta-analyses, and allow for comparative assessment of historic and contemporary data. Overall, these equations will enable conservation managers to better understand and predict ecological impacts of these bivalves.Fil: Coughlan, Neil E.. The Queens University of Belfast; Irlanda. University College Cork; IrlandaFil: Cunningham, Eoghan M.. The Queens University of Belfast; IrlandaFil: Cuthbert, Ross N.. The Queens University of Belfast; Irlanda. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: Joyce, Patrick W. S.. The Queens University of Belfast; IrlandaFil: Anastácio, Pedro. Universidade de Évora; PortugalFil: Banha, Filipe. Universidade de Évora; PortugalFil: Bonel, Nicolás. Université Montpellier II; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Bradbeer, Stephanie J.. University of Leeds; Reino UnidoFil: Briski, Elizabeta. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: Butitta, Vince L.. University of Wisconsin; Estados UnidosFil: Cadková, Zuzana. Czech University of Life Sciences; República ChecaFil: Dick, Jaimie T. A.. The Queens University of Belfast; IrlandaFil: Douda, Karel. Czech University of Life Sciences; República ChecaFil: Eagling, Lawrence E.. The Queens University of Belfast; IrlandaFil: Ferreira Rodríguez, Noé. Universidad de Vigo; EspañaFil: Hünicken, Leandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Johansson, Mattias L.. University of North Georgia; Estados UnidosFil: Kregting, Louise. The Queens University of Belfast; IrlandaFil: Labecka, Anna Maria. Jagiellonian University; PoloniaFil: Li, Deliang. Hunan Agricultural University; ChinaFil: Liquin, Florencia Fernanda. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Marescaux, Jonathan. University of Namur; Bélgica. e-biom; BélgicaFil: Morris, Todd J.. Fisheries and Ocean Canada; CanadáFil: Nowakowska, Patrycja. University of Gdansk; PoloniaFil: Ozgo, Malgorzata. Kazimierz Wielki University; PoloniaFil: Paolucci, Esteban Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Peribáñez, Miguel A.. Universidad de Zaragoza; EspañaFil: Riccardi, Nicoletta. Consiglio Nazionale delle Ricerche; ItaliaFil: Smith, Emily R. C.. University College London; Estados UnidosFil: Sylvester, Francisco. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; Argentin
Contemporary climate change and terrestrial invertebrates:Evolutionary versus plastic changes
To forecast the responses of species to future climate change, an understanding of the ability of species to adapt to long-term shifts in temperature is crucial. We present a review on evolutionary adaptation and phenotypic plasticity of temperature-related traits in terrestrial invertebrates. The evidence for adaptive evolution in melanization is good, but we caution that genetic determination needs to be tested in each individual species, and complex genetic correlations may exist. For phenological traits allochronic data sets provide powerful means to track climate-induced changes; however, rarely are responses deconstructed into evolutionary and plastic responses. Laboratory studies suggest climate change responses in these traits will be driven by both. For stress resistance, the evidence for shifts in traits is poor. Studies leaning heavily on Drosophila have demonstrated potential limits to evolutionary responses in desiccation and heat resistance. Quantifying the capacity for these species to respond plastically and extending this work to other taxa will be an important next step. We also note that, although not strictly speaking a species trait, the response of endosymbionts to heat stress requires further study. Finally, while clearly genetic, and possibly adaptive, the anonymous nature of latitudinal shifts in clines of genetic markers in Drosophila prevents further interpretation
Biometric conversion factors as a unifying platform for comparative assessment of invasive freshwater bivalves
Invasive bivalves continue to spread and negatively impact freshwater ecosystems worldwide. As different metrics for body size and biomass are frequently used within the literature to standardise bivalve-related ecological impacts (e.g. respiration and filtration rates), the lack of broadly applicable conversion equations currently hinders reliable comparison across bivalve populations. To facilitate improved comparative assessment among studies originating from disparate geographical locations, we report body size and biomass conversion equations for six invasive freshwater bivalves (or species complex members) worldwide: Corbicula fluminea, C. largillierti, Dreissena bugensis, D. polymorpha, Limnoperna fortunei and Sinanodonta woodiana, and tested the reliability (i.e. precision and accuracy) of these equations. Body size (length, width and height) and biomass metrics of living-weight (LW), wet-weight (WW), dry-weight (DW), dry shell-weight (SW), shell free dry-weight (SFDW) and ash-free dry-weight (AFDW) were collected from a total of 44 bivalve populations located in Asia, the Americas and Europe. Relationships between body size and individual biomass metrics, as well as proportional weight-to-weight conversion factors, were determined. For most species, although inherent variation existed between sampled populations, body size directional measurements were found to be good predictors of all biomass metrics (e.g. length to LW, WW, SW or DW: R2 = 0.82–0.96), with moderate to high accuracy for mean absolute error (MAE): ±9.14%–24.19%. Similarly, narrow 95% confidence limits and low MAE were observed for most proportional biomass relationships, indicating high reliability for the calculated conversion factors (e.g. LW to AFDW; CI range: 0.7–2.0, MAE: ±0.7%–2.0%). Synthesis and applications. Our derived biomass prediction equations can be used to rapidly estimate the biologically active biomass of the assessed species, based on simpler biomass or body size measurements for a wide range of situations globally. This allows for the calculation of approximate average indicators that, when combined with density data, can be used to estimate biomass per geographical unit-area and contribute to quantification of population-level effects. These general equations will support meta-analyses, and allow for comparative assessment of historic and contemporary data. Overall, these equations will enable conservation managers to better understand and predict ecological impacts of these bivalves. © 2021 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Societ