59 research outputs found

    Participation of the PI-3K/Akt-NF-κB signaling pathways in hypoxia-induced mitogenic factor-stimulated Flk-1 expression in endothelial cells

    Get PDF
    BACKGROUND: Hypoxia-induced mitogenic factor (HIMF), a lung-specific growth factor, promotes vascular tubule formation in a matrigel plug model. We initially found that HIMF enhances vascular endothelial growth factor (VEGF) expression in lung epithelial cells. In present work, we tested whether HIMF modulates expression of fetal liver kinase-1 (Flk-1) in endothelial cells, and dissected the possible signaling pathways that link HIMF to Flk-1 upregulation. METHODS: Recombinant HIMF protein was intratracheally instilled into adult mouse lungs, Flk-1 expression was examined by immunohistochemistry and Western blot. The promoter-luciferase reporter assay and real-time RT-PCR were performed to examine the effects of HIMF on Flk-1 expression in mouse endothelial cell line SVEC 4–10. The activation of NF-kappa B (NF-κB) and phosphorylation of Akt, IKK, and IκBα were examined by luciferase assay and Western blot, respectively. RESULTS: Intratracheal instillation of HIMF protein resulted in a significant increase of Flk-1 production in lung tissues. Stimulation of SVEC 4–10 cells by HIMF resulted in increased phosphorylation of IKK and IκBα, leading to activation of NF-κB. Blocking NF-κB signaling pathway by dominant-negative mutants of IKK and IκBα suppressed HIMF-induced Flk-1 upregulation. Mutation or deletion of NF-κB binding site within Flk-1 promoter also abolished HIMF-induced Flk-1 expression in SVEC 4–10 cells. Furthermore, HIMF strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Δp85, as well as PI-3K inhibitor LY294002, blocked HIMF-induced NF-κB activation and attenuated Flk-1 production. CONCLUSION: These results suggest that HIMF upregulates Flk-1 expression in endothelial cells in a PI-3K/Akt-NF-κB signaling pathway-dependent manner, and may play critical roles in pulmonary angiogenesis

    Phosphoinositide 3-kinase and Bruton's tyrosine kinase regulate overlapping sets of genes in B lymphocytes

    No full text
    Bruton's tyrosine kinase (Btk) acts downstream of phosphoinositide 3-kinase (PI3K) in a pathway required for B cell receptor (BCR)-dependent proliferation. We used DNA microarrays to determine what fraction of genes this pathway influences and to investigate whether PI3K and Btk mediate distinct gene regulation events. As complete loss-of-function mutations in PI3K and Btk alter B cell subpopulations and may cause compensatory changes in gene expression, we used B cells with partial loss of function in either PI3K or Btk. Only about 5% of the BCR-dependent gene expression changes were significantly affected by reduced PI3K or Btk. The results indicate that PI3K and Btk share target genes, and that PI3K influences additional genes independently of Btk. These data are consistent with PI3K acting through Btk and other effectors to regulate expression of a critical subset of BCR target genes that determine effective entry into the cell cycle
    corecore