56 research outputs found

    First-principles investigation of Nox and Sox adsorption on anatase-supported BaO and Pt overlayers

    Get PDF
    Cataloged from PDF version of article.We present a density functional theory investigation of the adsorption properties of NO and NO2 as well as SO2 and SO3 on BaO and Pt overlayers on anatase TiO2(001) surface. Mono layers, bilayers, and trilayers of BaO grow without strain-induced large scale reconstructions. While the bilayer and trilayer preserve, to a large extent, the NO2 adsorption characteristics of the clean BaO(100) surface, the effect of the support is evident in SO2 and SO3 adsorption energies, which are somewhat reduced with respect to the clean BaO(100) surface. When a Pt(100) layer is added on the TiO2 surface, four stable adsorption geometries are identified in the case of NO while NO2 is found to adsorb in only two configurations

    Sulfur-tolerant BaO/ZrO2/TiO2/Al2O3 quaternary mixed oxides for deNOX catalysis

    Get PDF
    Advanced quaternary mixed oxide materials in the form of BaO/Al2O3/ZrO2/TiO2 functionalized with Pt active sites (i.e. Pt/BaO/AZT) were synthesized and structurally characterized via XRD and BET in comparison to a conventional Pt/20BaO/Al benchmark NSR/LNT catalyst. The interactions of these catalysts' surfaces with SOx and NOx gases were monitored via in situ FTIR and TPD. There exists a delicate trade-off between NOx storage capacity (NSC) and sulfur uptake/poisoning which is strongly governed by the BaO loading/dispersion as well as the surface structure and acidity of the support material. Flow reactor measurements performed under realistic catalytic conditions show the high NOx activity for the Pt/20BaO/AZT catalyst at 573 K. After sulfur poisoning and subsequent regeneration at 773 and 973 K, Pt/20BaO/AZT surpassed the NOx catalytic performance at 573 K of all other investigated materials including the conventional Pt/20BaO/Al benchmark catalyst. � The Royal Society of Chemistry 2017

    First-principles investigation of NO x and SO x adsorption on anatase-supported BaO and Pt overlayers

    No full text
    We present a density functional theory investigation of the adsorption properties of NO and NO 2 as well as SO 2 and SO 3 on BaO and Pt overlayers on anatase TiO 2(001) surface. Monolayers, bilayers, and trilayers of BaO grow without strain-induced large scale reconstructions. While the bilayer and trilayer preserve, to a large extent, the NO 2 adsorption characteristics of the clean BaO(100) surface, the effect of the support is evident in SO 2 and SO 3 adsorption energies, which are somewhat reduced with respect to the clean BaO(100) surface. When a Pt(100) layer is added on the TiO 2 surface, four stable adsorption geometries are identified in the case of NO while NO 2 is found to adsorb in only two configurations. © 2012 American Chemical Society

    Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls

    No full text
    Cataloged from PDF version of article.Polystyrene cross-linked divinyl benzene (PS-co-DVB) microspheres were used as an organic template in order to synthesize photocatalytic TiO2 microspheres and microbowls. Photocatalytic activity of the microbowl surfaces were demonstrated both in the gas phase via photocatalytic NO(g) oxidation by O-2(g) as well as in the liquid phase via Rhodamine B degradation. Thermal degradation mechanism of the polymer template and its direct influence on the TiO2 crystal structure, surface morphology, composition, specific surface area and the gas/liquid phase photocatalytic activity data were discussed in detail. With increasing calcination temperatures, spherical polymer template first undergoes a glass transition, covering the TiO2 film, followed by the complete decomposition of the organic template to yield TiO2 exposed microbowl structures. TiO2 microbowl systems calcined at 600 degrees C yielded the highest per-site basis photocatalytic activity. Crystallographic and electronic properties of the TiO2 microsphere surfaces as well as their surface area play a crucial role in their ultimate photocatalytic activity. It was demonstrated that the polymer microsphere templated TiO2 photocatalysts presented in the current work offer a promising and a versatile synthetic platform for photocatalytic DeNO(x) applications for air purification technologies. (C) 2014 Elsevier B.V. All rights reserved

    TiO2-Al2O3 binary mixed oxide surfaces for photocatalytic Nox abatement

    No full text
    Cataloged from PDF version of article.TiO2-Al2O3 binary oxide surfaces were utilized in order to develop an alternative photocatalytic NOx abatement approach, where TiO2 sites were used for ambient photocatalytic oxidation of NO with O-2 and alumina sites were exploited for NOx storage. Chemical, crystallographic and electronic structure of the TiO2-Al2O3 binary oxide surfaces were characterized (via BET surface area measurements, XRD, Raman spectroscopy and DR-UV-Vis Spectroscopy) as a function of the TiO2 loading in the mixture as well as the calcination temperature used in the synthesis protocol. 0.5 Ti/Al-900 photocatalyst showed remarkable photocatalytic NOx oxidation and storage performance, which was found to be much superior to that of a Degussa P25 industrial benchmark photocatalyst (i.e. 160% higher NOx storage and 55% lower NO2(g) release to the atmosphere). Our results indicate that the onset of the photocatalytic NOx abatement activity is concomitant to the switch between amorphous to a crystalline phase with an electronic band gap within 3.05-3.10 eV; where the most active photocatalyst revealed predominantly rutile phase together and anatase as the minority phase. (C) 2014 Elsevier B.V. All rights reserved
    corecore