2 research outputs found

    Forgeability of AZ Series Magnesium Alloy produced by Twin Roll Casting

    Full text link
    Plastic forming of magnesium alloy is hardly reported because of its low forgeability. The productions of magnesium alloy are mainly produced by casting. Typical wrought magnesium alloy is AZ31. Magnesium-aluminum alloy indicates maximum elongation when the composition includes 3% aluminum. When the magnesium alloy includes over 3% aluminum, its elongation slightly decreases. Therefore, AZ31 that include 3% aluminum and 1% zinc is generally used for plastic forming. The more increasing aluminum composition, the larger 0.2% proof stress becomes. However its forgeability is decreasing because of precipitation of β phase such as Mg17Al12. It is supposed that the β phase is refined by rapid cooling casting process such as twin roll casting. In this paper, the magnesium alloy thick sheet of AZ91, AZ121 and AZ131 for hot forging, that include 9%, 12% and 13% aluminum composition respectively, was produced by twin roll strip casting process. And the forgeability of high aluminum containing magnesium alloy was investigated by die forging. As a result, it was possible to forge their magnesium alloys

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore