21 research outputs found

    An automated slide scanning system for membrane filter imaging in diagnosis of urogenital schistosomiasis

    Get PDF
    Traditionally, automated slide scanning involves capturing a rectangular grid of field-of-view (FoV) images which can be stitched together to create whole slide images, while the autofocusing algorithm captures a focal stack of images to determine the best in-focus image. However, these methods can be time-consuming due to the need for X-, Y- and Z-axis movements of the digital microscope while capturing multiple FoV images. In this paper, we propose a solution to minimise these redundancies by presenting an optimal procedure for automated slide scanning of circular membrane filters on a glass slide. We achieve this by following an optimal path in the sample plane, ensuring that only FoVs overlapping the filter membrane are captured. To capture the best in-focus FoV image, we utilise a hill-climbing approach that tracks the peak of the mean of Gaussian gradient of the captured FoVs images along the Z-axis. We implemented this procedure to optimise the efficiency of the Schistoscope, an automated digital microscope developed to diagnose urogenital schistosomiasis by imaging Schistosoma haematobium eggs on 13 or 25 mm membrane filters. Our improved method reduces the automated slide scanning time by 63.18% and 72.52% for the respective filter sizes. This advancement greatly supports the practicality of the Schistoscope in large-scale schistosomiasis monitoring and evaluation programs in endemic regions. This will save time, resources and also accelerate generation of data that is critical in achieving the targets for schistosomiasis elimination

    Position and Trajectory Tracking Control for the Ball and Plate System using Mixed Sensitivity Problem

    Get PDF
    This paper presents the position and trajectory tracking control scheme for the ball and plate system (BPS) using the double feedback loop structure (a loop within a loop) for effective control of the system. The inner loop was designed using linear algebraic method by solving a set of Diophantine equations. The outer inner loop was designed using   sensitivity approach. Simulation results showed that the plate was stabilized at 0.3546 seconds, and the ball was able to settle at 1.7087 seconds, when given a circular trajectory of radius 0.4 m with an angular frequency of 1.57 rad/sec, with a trajectory tracking error of 0.0095 m, which shows that the controllers have adaptability, strong robustness and control performance for the ball and plate system.           

    Development of a Dynamic Cuckoo Search Algorithm

    Get PDF
    This research is aimed at the developing a modified cuckoo search algorithm called dynamic cuckoo search algorithm (dCSA). The standard cuckoo search algorithm is a metaheuristics search algorithm that mimic the behavior of brood parasitism of some cuckoo species and Levy flight behavior of some fruit flies and birds. It, however uses fixed value for control parameters (control probability and step size) and this method have drawbacks with respect to quality of the solutions and number of iterations to obtain optimal solution. Therefore, the dCSA is developed to address these problems in the CSA by introducing random inertia weight strategy to the control parameters so as to make the control parameters dynamic with respect to the proximity of a cuckoo to the optimal solution. The developed dCSA was compared with CSA using ten benchmark test functions. The results obtained indicated the superiority of dCSA over CSA by generating a near global optimal result for 9 out of the ten benchmark test functions

    Two-stage automated diagnosis framework for urogenital schistosomiasis in microscopy images from low-resource settings

    Get PDF
    Purpose Automated diagnosis of urogenital schistosomiasis using digital microscopy images of urine slides is an essential step toward the elimination of schistosomiasis as a disease of public health concern in Sub-Saharan African countries. We create a robust image dataset of urine samples obtained from field settings and develop a two-stage diagnosis framework for urogenital schistosomiasis. Approach Urine samples obtained from field settings were captured using the Schistoscope device, and S. haematobium eggs present in the images were manually annotated by experts to create the SH dataset. Next, we develop a two-stage diagnosis framework, which consists of semantic segmentation of S. haematobium eggs using the DeepLabv3-MobileNetV3 deep convolutional neural network and a refined segmentation step using ellipse fitting approach to approximate the eggs with an automatically determined number of ellipses. We defined two linear inequality constraints as a function of the overlap coefficient and area of a fitted ellipses. False positive diagnosis resulting from over-segmentation was further minimized using these constraints. We evaluated the performance of our framework on 7605 images from 65 independent urine samples collected from field settings in Nigeria, by deploying our algorithm on an Edge AI system consisting of Raspberry Pi + Coral USB accelerator. Result The SH dataset contains 12,051 images from 103 independent urine samples and the developed urogenital schistosomiasis diagnosis framework achieved clinical sensitivity, specificity, and precision of 93.8%, 93.9%, and 93.8%, respectively, using results from an experienced microscopist as reference. Conclusion Our detection framework is a promising tool for the diagnosis of urogenital schistosomiasis as our results meet the World Health Organization target product profile requirements for monitoring and evaluation of schistosomiasis control programs

    Performance evaluation of the Schistoscope 5.0 for (semi-)automated digital detection and quantification of schistosoma haematobium eggs in Urine: A field-based study in Nigeria

    Get PDF
    Conventional microscopy is the standard procedure for the diagnosis of schistosomiasis, despite its limited sensitivity, reliance on skilled personnel, and the fact that it is error prone. Here, we report the performance of the innovative (semi-)automated Schistoscope 5.0 for optical digital detection and quantification of Schistosoma haematobium eggs in urine, using conventional microscopy as the reference standard. At baseline, 487 participants in a rural setting in Nigeria were assessed, of which 166 (34.1%) tested S. haematobium positive by conventional microscopy. Captured images from the Schistoscope 5.0 were analyzed manually (semiautomation) and by an artificial intelligence (AI) algorithm (full automation). Semi- and fully automated digital microscopy showed comparable sensitivities of 80.1% (95% confidence interval [CI]: 73.2–86.0) and 87.3% (95% CI: 81.3–92.0), but a significant difference in specificity of 95.3% (95% CI: 92.4–97.4) and 48.9% (95% CI: 43.3–55.0), respectively. Overall, estimated egg counts of semi- and fully automated digital microscopy correlated significantly with the egg counts of conventional microscopy (r = 0.90 and r = 0.80, respectively, P < 0.001), although the fully automated procedure generally underestimated the higher egg counts. In 38 egg positive cases, an additional urine sample was examined 10 days after praziquantel treatment, showing a similar cure rate and egg reduction rate when comparing conventional microscopy with semiautomated digital microscopy. In this first extensive field evaluation, we found the semiautomated Schistoscope 5.0 to be a promising tool for the detection and monitoring of S. haematobium infection, although further improvement of the AI algorithm for full automation is required

    Validation of artificial intelligence-based digital microscopy for automated detection of Schistosoma haematobium eggs in urine in Gabon

    Get PDF
    Introduction Schistosomiasis is a significant public health concern, especially in Sub-Saharan Africa. Conventional microscopy is the standard diagnostic method in resource-limited settings, but with limitations, such as the need for expert microscopists. An automated digital microscope with artificial intelligence (Schistoscope), offers a potential solution. This field study aimed to validate the diagnostic performance of the Schistoscope for detecting and quantifying Schistosoma haematobium eggs in urine compared to conventional microscopy and to a composite reference standard (CRS) consisting of real-time PCR and the up-converting particle (UCP) lateral flow (LF) test for the detection of schistosome circulating anodic antigen (CAA). Methods Based on a non-inferiority concept, the Schistoscope was evaluated in two parts: study A, consisting of 339 freshly collected urine samples and study B, consisting of 798 fresh urine samples that were also banked as slides for analysis with the Schistoscope. In both studies, the Schistoscope, conventional microscopy, real-time PCR and UCP-LF CAA were performed and samples with all the diagnostic test results were included in the analysis. All diagnostic procedures were performed in a laboratory located in a rural area of Gabon, endemic for S. haematobium. Results In study A and B, the Schistoscope demonstrated a sensitivity of 83.1% and 96.3% compared to conventional microscopy, and 62.9% and 78.0% compared to the CRS. The sensitivity of conventional microscopy in study A and B compared to the CRS was 61.9% and 75.2%, respectively, comparable to the Schistoscope. The specificity of the Schistoscope in study A (78.8%) was significantly lower than that of conventional microscopy (96.4%) based on the CRS but comparable in study B (90.9% and 98.0%, respectively). Conclusion Overall, the performance of the Schistoscope was non-inferior to conventional microscopy with a comparable sensitivity, although the specificity varied. The Schistoscope shows promising diagnostic accuracy, particularly for samples with moderate to higher infection intensities as well as for banked sample slides, highlighting the potential for retrospective analysis in resource-limited settings

    Schistoscope: smartphone versus Raspberry Pi based low-cost diagnostic device for urinary Schistosomiasis

    No full text
    Schistosomiasis is a neglected tropical disease of Public Health importance affecting over 252 million people worldwide with Nigeria having a very high number of cases. It is caused by blood flukes of the genus Schistosoma and transmitted by freshwater snails. To achieve the current global elimination objectives, low-cost and easy-to-use diagnostic tools are critically needed. Recent innovations in optical and computer technologies have made handheld digital and smartphone-based microscopes a viable diagnostic approach. Development, validation and deployment of these diagnostic devices for field use, however, require the optimisation of its optical train for the registration of high-resolution images and the realisation of a robust system design that can be locally produced in low-income countries. Field research conducted in Nigeria with active involvement of key stakeholders in research and development (R&D) led to the design of an initial prototype device for the diagnosis of urinary schistosomiasis, called Schistoscope 1.0. In this paper, we present further development of the Schistoscope 1.0 along two parallel design trajectories: a Raspberry Pi and a Smartphone-based Schistoscope. Specifically, we focused on the optimization of the optics, embodiment design and the electronics systems of the devices so as to produce a robust design with potential for local production

    Development of a Dynamic Cuckoo Search Algorithm

    No full text
    This research is aimed at the developing a modified cuckoo search algorithm called dynamic cuckoo search algorithm (dCSA). The standard cuckoo search algorithm is a metaheuristics search algorithm that mimic the behavior of brood parasitism of some cuckoo species and Levy flight behavior of some fruit flies and birds. It, however uses fixed value for control parameters (control probability and step size) and this method have drawbacks with respect to quality of the solutions and number of iterations to obtain optimal solution. Therefore, the dCSA is developed to address these problems in the CSA by introducing random inertia weight strategy to the control parameters so as to make the control parameters dynamic with respect to the proximity of a cuckoo to the optimal solution. The developed dCSA was compared with CSA using ten benchmark test functions. The results obtained indicated the superiority of dCSA over CSA by generating a near global optimal result for 9 out of the ten benchmark test functions
    corecore