10 research outputs found
Genomic analysis of mesorhizobium loti strain tono reveals dehalogenases for bioremediation
Halogenated compounds are extensively utilized in different industrial applications such as pesticides and herbicides and cause severe environmental problems because of their toxicity and persistence. Degradation of these compounds by the biological method is a significant method to reduce these recalcitrant. Mesorhizobium loti is im-portant for nitrogen fixation in legume roots. Up to now, there is no report to indicate M. loti can produce dehalogenase enzymes. Thus, a total of twenty-five genomes of M. loti strains from the National Center for Biotechnology Information (NCBI) were an-alyzed. These strains notably carry dehalogenase genes and were further investigated. The relative ratio of haloalkane and haloacid dehalogenase type II or L-type from all twenty-five genomes was 26% and 74%, respectively, suggesting type II dehalogen-ase is common. Surprisingly, only M. loti strain TONO carries four dehalogenases and therefore it was further characterized. The chromosome of M. loti strain TONO con-tains four haloacid dehalogenase type II genes namely, dehLt1 (MLTONO_2099), dehLt2 (MLTONO_3660), dehLt3 (MLTONO_4143), and dehLt4 (MLTONO_6945), and their corresponding enzymes were designated as DehLt1, DehLt2, DehLt3, and DehLt4, respectively. The only haloalkane dehalogen-ase gene (MLTONO_4828) was located upstream of the dehLt3 gene and its amino acid share 88% identity with DmlA of Mesorhizobium japonicum MAFF 303099. The putative haloacid permease gene designated as dehrPt (MLTONO_0284) was located downstream of the dehLt1 and its amino acids show 69% identity with haloacid per-mease of Rhizobium sp. RC1. The gene encoding helix-turn-helix (HTH) motif family DNA-binding protein regulator and LysR family transcriptional regulator genes were also identified, possibly for regulatory functions. The genomic studies as such, have good potential to be screened for new type of dehalogenases based on basic molecular structure and functions analysis
Dehalogenases for pollutant degradation: a mini review
Dehalogenases are microbial enzyme catalysed the cleavage of carbon-halogen bond of halogenated organic compounds. It has potential use in the area of biotechnology such as bioremediation and chemical industry. Halogenated organic compounds can be found in a considerable amount in the environment due to utilization in agriculture and industry, such as pesticides and herbicides. The presence of halogenated compound in the environment have been implicated on the health and natural ecosystem. Microbial dehalogenation is a significant method to tackle this problem. This review intends to briefly describe the microbial dehalogenases in relation to the environment where they are isolated. The basic information about dehalogenases in relation to dehalogenation mechanisms, classification, sources and the transportation of these pollutants into bacterial cytoplasm will be described. We also summarised readily available synthetic halogenated organic compound in the environment
Genomic analysis of functional haloacid-degrading gene of bacillus megaterium strain bhs1 isolated from blue lake (mavi göl, turkey)
Purpose: Bacillus megaterium strain BHS1, isolated from an alkaline water sample taken from Mavi Golu (Blue Lake, Turkey), can grow on minimal medium containing 2,2-dichloropropionic acid. We characterized this bacterium at the genomic level. Methods: The HiSeq platform was used to carry out genome sequencing, de novo assembly, and scaffolding with strain BHS1. Next, genome data were analyzed to demarcate DNA regions containing protein-coding genes and determine the function of certain BHS1 genes. Finally, results from a colorimetric chloride ion-release assay demonstrated that strain BHS1 produces dehalogenase. Results: De novo assembly of the BHS1 genomic sequence revealed a genome size of similar to 5.37 Mb with an average G+C content of 38%. The predicted nuclear genome harbors 5509 protein-coding genes, 1353 tRNA genes, 67 rRNA genes, and 6 non-coding (mRNA) genes. Genomic mapping of strain BHS1 revealed its amenability to synthesize two families of dehalogenases (Cof-type haloacid dehalogenase IIB family hydrolase and haloacid dehalogenase type II), suggesting that these enzymes can participate in the catabolism of halogenated organic acids. The mapping identified seven Na+/H+ antiporter subunits that are vital for adaptation of the bacterium to an alkaline environment. Apart from a pairwise analysis to the well-established L-2-haloacid dehalogenases, whole-cell analysis strongly suggested that the haloacid dehalogenase type II might act stereospecifically on L-2-chloropropionic acid, D,L-2-chloropropionic acid, and 2,2-dichloropropionic acid. Whole-cell studies confirmed the utilization of these three substrates and the gene's role in dehalogenation. Conclusions: To our knowledge, this is the first report of the full genome sequence for strain BHS1, which enabled the characterization of selected genes having specific metabolic activities and their roles in the biodegradation of halogenated compounds
Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria
An integral approach to decoding both culturable and uncultured microorganisms' metabolic activity involves the whole genome sequencing (WGS) of individual/complex microbial communities. WGS of culturable microbes, amplicon sequencing, metagenomics, and single-cell genome analysis are selective techniques integrating genetic information and biochemical mechanisms. These approaches transform microbial biotechnology into a quick and high-throughput culture-independent evaluation and exploit pollutant-degrading microbes. They are windows into enzyme regulatory bioremediation pathways (i.e., dehalogenase) and the complete bioremediation process of organohalide pollutants. While the genome sequencing technique is gaining the scientific community's interest, it is still in its infancy in the field of pollutant bioremediation. The techniques are becoming increasingly helpful in unraveling and predicting the enzyme structure and explore metabolic and biodegradation capabilities
Development and sensory evaluation of soyamusa: a soybeanplantain baby food
Appropriate technologies were used to process plantain and soybean into flour which were used for the formulation of ‘Soyamusa’, a soybean-plantain baby food that requires little cooking. Extruded and non-extruded soybean grits were produced and mixed with plantain flour in varying proportions to determine the blend that would give the required energy and protein level in baby foods. A mixture of sugar, vitamins and minerals was added to improve the taste and to meet the recommended daily vitamin and mineral requirements for babies. The final blend was subjected to nutritional and sensory evaluations. The sensory test was to determine the acceptability of the two products of ‘Soyamusa’ and compare them with other popular market brands. It was found that a mixture of 60% plantain flour, 32% soybean grit and 8% sugar produced a blend whose proximate analysis showed 15.8% protein, 8.0% fat, and 72.8% carbohydrate with an energy content of 457.4 kcal per 100g. The sixteen weaning Wister rats on ‘Soyamusa’ had normal growth, packed cell volume and white blood cell count. Hemagglutination test did not indicate any immunological reaction against ‘Soyamusa’. Results of the comparative assessment of the two samples for color, flavor, consistency, mouthful, taste and overall acceptability did not show any significant difference (P > 0.05). However, the samples differ significantly in all attributes (P < 0.01) from the two popular market brands but were equally acceptable
Economic Benefits of Onigambari Forest Reserves on the Host Communities
A multistage sampling was adopted in which purposive sampling was used to identify communities where government and non-governmental organization have their presence and the benefits they attract to these communities. Further, a stratified random sampling was used to administer 25 questionnaires in chosen four communities in each of the two axes of the forest reserve making a total of 8 communities and a grand total of 200 questionnaires. The benefits derived from the forest reserve are many, which include land for farming within the open spaces of the forest, logging, fuel wood extraction, medicinal herbs and shrub extractions, hunting and bush meat sales. It was recommended that young people should take advantage of the enormous opportunities around this forest reserve to get for themselves gainful business and employment opportunities. Government should also provide infrastructural facilities and amenities to the rural communities to make living there convenience for the people
Evaluating newly approved drugs for multidrug-resistant tuberculosis (endTB): study protocol for an adaptive, multi-country randomized controlled trial.
BackgroundTreatment of multidrug- and rifampin-resistant tuberculosis (MDR/RR-TB) is expensive, labour-intensive, and associated with substantial adverse events and poor outcomes. While most MDR/RR-TB patients do not receive treatment, many who do are treated for 18 months or more. A shorter all-oral regimen is currently recommended for only a sub-set of MDR/RR-TB. Its use is only conditionally recommended because of very low-quality evidence underpinning the recommendation. Novel combinations of newer and repurposed drugs bring hope in the fight against MDR/RR-TB, but their use has not been optimized in all-oral, shorter regimens. This has greatly limited their impact on the burden of disease. There is, therefore, dire need for high-quality evidence on the performance of new, shortened, injectable-sparing regimens for MDR-TB which can be adapted to individual patients and different settings.MethodsendTB is a phase III, pragmatic, multi-country, adaptive, randomized, controlled, parallel, open-label clinical trial evaluating the efficacy and safety of shorter treatment regimens containing new drugs for patients with fluoroquinolone-susceptible, rifampin-resistant tuberculosis. Study participants are randomized to either the control arm, based on the current standard of care for MDR/RR-TB, or to one of five 39-week multi-drug regimens containing newly approved and repurposed drugs. Study participation in all arms lasts at least 73 and up to 104 weeks post-randomization. Randomization is response-adapted using interim Bayesian analysis of efficacy endpoints. The primary objective is to assess whether the efficacy of experimental regimens at 73 weeks is non-inferior to that of the control. A sample size of 750 patients across 6 arms affords at least 80% power to detect the non-inferiority of at least 1 (and up to 3) experimental regimens, with a one-sided alpha of 0.025 and a non-inferiority margin of 12%, against the control in both modified intention-to-treat and per protocol populations.DiscussionThe lack of a safe and effective regimen that can be used in all patients is a major obstacle to delivering appropriate treatment to all patients with active MDR/RR-TB. Identifying multiple shorter, safe, and effective regimens has the potential to greatly reduce the burden of this deadly disease worldwide.Trial registrationClinicalTrials.gov Identifier NCT02754765. Registered on 28 April 2016; the record was last updated for study protocol version 3.3, on 27 August 2019
Recommended from our members
Evaluating newly approved drugs in combination regimens for multidrug-resistant tuberculosis with fluoroquinolone resistance (endTB-Q): study protocol for a multi-country randomized controlled trial.
BACKGROUND: Treatment for fluoroquinolone-resistant multidrug-resistant/rifampicin-resistant tuberculosis (pre-XDR TB) often lasts longer than treatment for less resistant strains, yields worse efficacy results, and causes substantial toxicity. The newer anti-tuberculosis drugs, bedaquiline and delamanid, and repurposed drugs clofazimine and linezolid, show great promise for combination in shorter, less-toxic, and effective regimens. To date, there has been no randomized, internally and concurrently controlled trial of a shorter, all-oral regimen comprising these newer and repurposed drugs sufficiently powered to produce results for pre-XDR TB patients. METHODS: endTB-Q is a phase III, multi-country, randomized, controlled, parallel, open-label clinical trial evaluating the efficacy and safety of a treatment strategy for patients with pre-XDR TB. Study participants are randomized 2:1 to experimental or control arms, respectively. The experimental arm contains bedaquiline, linezolid, clofazimine, and delamanid. The control comprises the contemporaneous WHO standard of care for pre-XDR TB. Experimental arm duration is determined by a composite of smear microscopy and chest radiographic imaging at baseline and re-evaluated at 6 months using sputum culture results: participants with less extensive disease receive 6 months and participants with more extensive disease receive 9 months of treatment. Randomization is stratified by country and by participant extent-of-TB-disease phenotype defined according to screening/baseline characteristics. Study participation lasts up to 104 weeks post randomization. The primary objective is to assess whether the efficacy of experimental regimens at 73 weeks is non-inferior to that of the control. A sample size of 324 participants across 2 arms affords at least 80% power to show the non-inferiority, with a one-sided alpha of 0.025 and a non-inferiority margin of 12%, against the control in both modified intention-to-treat and per-protocol populations. DISCUSSION: This internally controlled study of shortened treatment for pre-XDR TB will provide urgently needed data and evidence for clinical and policy decision-making around the treatment of pre-XDR TB with a four-drug, all-oral, shortened regimen. TRIAL REGISTRATION: ClinicalTrials.Gov NCT03896685. Registered on 1 April 2018; the record was last updated for study protocol version 4.3 on 17 March 2023
Evaluating newly approved drugs in combination regimens for multidrug-resistant tuberculosis with fluoroquinolone resistance (endTB-Q): study protocol for a multi-country randomized controlled trial
Abstract Background Treatment for fluoroquinolone-resistant multidrug-resistant/rifampicin-resistant tuberculosis (pre-XDR TB) often lasts longer than treatment for less resistant strains, yields worse efficacy results, and causes substantial toxicity. The newer anti-tuberculosis drugs, bedaquiline and delamanid, and repurposed drugs clofazimine and linezolid, show great promise for combination in shorter, less-toxic, and effective regimens. To date, there has been no randomized, internally and concurrently controlled trial of a shorter, all-oral regimen comprising these newer and repurposed drugs sufficiently powered to produce results for pre-XDR TB patients. Methods endTB-Q is a phase III, multi-country, randomized, controlled, parallel, open-label clinical trial evaluating the efficacy and safety of a treatment strategy for patients with pre-XDR TB. Study participants are randomized 2:1 to experimental or control arms, respectively. The experimental arm contains bedaquiline, linezolid, clofazimine, and delamanid. The control comprises the contemporaneous WHO standard of care for pre-XDR TB. Experimental arm duration is determined by a composite of smear microscopy and chest radiographic imaging at baseline and re-evaluated at 6 months using sputum culture results: participants with less extensive disease receive 6 months and participants with more extensive disease receive 9 months of treatment. Randomization is stratified by country and by participant extent-of-TB-disease phenotype defined according to screening/baseline characteristics. Study participation lasts up to 104 weeks post randomization. The primary objective is to assess whether the efficacy of experimental regimens at 73 weeks is non-inferior to that of the control. A sample size of 324 participants across 2 arms affords at least 80% power to show the non-inferiority, with a one-sided alpha of 0.025 and a non-inferiority margin of 12%, against the control in both modified intention-to-treat and per-protocol populations. Discussion This internally controlled study of shortened treatment for pre-XDR TB will provide urgently needed data and evidence for clinical and policy decision-making around the treatment of pre-XDR TB with a four-drug, all-oral, shortened regimen. Trial registration ClinicalTrials.Gov NCT03896685. Registered on 1 April 2018; the record was last updated for study protocol version 4.3 on 17 March 2023