60 research outputs found

    Timing of climatic events for Termination II from O2/N2, d18Oatm and CH4 records of the Dome Fuji ice core, Antarctica

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Wed. 4 Dec. / Entrance Hall (1st floor) , National Institute of Polar Researc

    Chemical compositions of soluble aerosols in the inland Antarctic ice cores over the last termination

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IG] 全球環境変動を駆動する南大洋・南極氷床11月17日(火) 国立極地研究所1階交流アトリウ

    Fixed point observation for daily snow surface monitoring along a latitudinal transect from the coast to the inland of Antarctica using camera images

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Wed. 4 Dec. / Entrance Hall (1st floor) , National Institute of Polar Researc

    グリーンランド氷床南東ドーム掘削

    Get PDF
    第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 国立極地研究所1階交流アトリウ

    Chronostratigraphy of the Larsen blue-ice area in northern Victoria Land, East Antarctica, and its implications for paleoclimate

    Get PDF
    In blue-ice areas (BIAs), deep ice is directly exposed at the surface, allowing for the cost-effective collection of large-sized old-ice samples. However, chronostratigraphic studies on blue-ice areas are challenging owing to fold and fault structures. Here, we report on a surface transect of ice with an undisturbed horizontal stratigraphy from the Larsen BIA, northern Victoria Land, East Antarctica. Ice layers defined by dust bands and ground-penetrating radar (GPR) surveys indicate a monotonic increase in age along the ice flow direction on the downstream side, while the upstream ice exhibits a potential repetition of ages on scales of tens of meters, which result from a complicated fold structure. Stable water isotopes (δ18Oice and δ2Hice) and components of the occluded air (i.e., CO2, N2O, CH4, δ15N–N2, δ18Oatm (=δ18O-O2), δO2/N2, δAr/N2​​​​​​​, 81Kr, and 85Kr) are analyzed for surface ice and shallow ice core samples. Correlating δ18Oice, δ18Oatm, and CH4 records from the Larsen BIA with ice from previously drilled ice cores indicates that the gas age at various shallow vertical coring sites ranges between 9.2–23.4 kyr BP, while the ice age sampled from the surface ranges from 5.6 to 24.7 kyr BP. Absolute radiometric 81Kr dating for the two vertical cores confirms ages within acceptable levels of analytical uncertainty. A tentative climate reconstruction suggests a large deglacial warming of 15 ± 5 ∘C (1σ) and an increase in snow accumulation by a factor of 1.7–4.6 (from 24.3 to 10.6 kyr BP). Our study demonstrates that BIAs in northern Victoria Land may help to obtain high-quality records for paleoclimate and atmospheric greenhouse gas compositions through the last deglaciation, although in general climatic interpretation is complicated by the need for upstream flow corrections, evidence for strong surface sublimation during the last glacial period, and potential errors in the estimated gas age–ice age difference.</p
    corecore