47 research outputs found
The Optimal Uncertainty Algorithm in the Mystic Framework
We have recently proposed a rigorous framework for Uncertainty Quantification
(UQ) in which UQ objectives and assumption/information set are brought into the
forefront, providing a framework for the communication and comparison of UQ
results. In particular, this framework does not implicitly impose inappropriate
assumptions nor does it repudiate relevant information. This framework, which
we call Optimal Uncertainty Quantification (OUQ), is based on the observation
that given a set of assumptions and information, there exist bounds on
uncertainties obtained as values of optimization problems and that these bounds
are optimal. It provides a uniform environment for the optimal solution of the
problems of validation, certification, experimental design, reduced order
modeling, prediction, extrapolation, all under aleatoric and epistemic
uncertainties. OUQ optimization problems are extremely large, and even though
under general conditions they have finite-dimensional reductions, they must
often be solved numerically. This general algorithmic framework for OUQ has
been implemented in the mystic optimization framework. We describe this
implementation, and demonstrate its use in the context of the Caltech surrogate
model for hypervelocity impact
Optimal Uncertainty Quantification
We propose a rigorous framework for Uncertainty Quantification (UQ) in which
the UQ objectives and the assumptions/information set are brought to the forefront.
This framework, which we call Optimal Uncertainty Quantification (OUQ), is based
on the observation that, given a set of assumptions and information about the problem,
there exist optimal bounds on uncertainties: these are obtained as extreme
values of well-defined optimization problems corresponding to extremizing probabilities
of failure, or of deviations, subject to the constraints imposed by the scenarios
compatible with the assumptions and information. In particular, this framework
does not implicitly impose inappropriate assumptions, nor does it repudiate relevant
information.
Although OUQ optimization problems are extremely large, we show that under
general conditions, they have finite-dimensional reductions. As an application,
we develop Optimal Concentration Inequalities (OCI) of Hoeffding and McDiarmid
type. Surprisingly, contrary to the classical sensitivity analysis paradigm, these results
show that uncertainties in input parameters do not necessarily propagate to
output uncertainties.
In addition, a general algorithmic framework is developed for OUQ and is tested
on the Caltech surrogate model for hypervelocity impact, suggesting the feasibility
of the framework for important complex systems
Optimal uncertainty quantification for legacy data observations of Lipschitz functions
We consider the problem of providing optimal uncertainty quantification (UQ)
--- and hence rigorous certification --- for partially-observed functions. We
present a UQ framework within which the observations may be small or large in
number, and need not carry information about the probability distribution of
the system in operation. The UQ objectives are posed as optimization problems,
the solutions of which are optimal bounds on the quantities of interest; we
consider two typical settings, namely parameter sensitivities (McDiarmid
diameters) and output deviation (or failure) probabilities. The solutions of
these optimization problems depend non-trivially (even non-monotonically and
discontinuously) upon the specified legacy data. Furthermore, the extreme
values are often determined by only a few members of the data set; in our
principal physically-motivated example, the bounds are determined by just 2 out
of 32 data points, and the remainder carry no information and could be
neglected without changing the final answer. We propose an analogue of the
simplex algorithm from linear programming that uses these observations to offer
efficient and rigorous UQ for high-dimensional systems with high-cardinality
legacy data. These findings suggest natural methods for selecting optimal
(maximally informative) next experiments.Comment: 38 page
Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity
Dense kernel matrices Θ∈R^(N×N) obtained from point evaluations of a covariance function G at locations {x_i}1≤i≤N arise in statistics, machine learning, and numerical analysis. For covariance functions that are Green's functions elliptic boundary value problems and approximately equally spaced sampling points, we show how to identify a subset S⊂{1,…,N}×{1,…,N}, with #S=O(Nlog(N)log^d(N/ϵ)), such that the zero fill-in block-incomplete Cholesky decomposition of Θ_(i,j)1_((i,j)∈S) is an ϵ-approximation of Θ. This block-factorisation can provably be obtained in O(Nlog^2(N)(log(1/ϵ)+log^2(N))^(4d+1)) complexity in time. Numerical evidence further suggests that element-wise Cholesky decomposition with the same ordering constitutes an O(Nlog^2(N)log^(2d)(N/ϵ)) solver. The algorithm only needs to know the spatial configuration of the x_i and does not require an analytic representation of G. Furthermore, an approximate PCA with optimal rate of convergence in the operator norm can be easily read off from this decomposition. Hence, by using only subsampling and the incomplete Cholesky decomposition, we obtain at nearly linear complexity the compression, inversion and approximate PCA of a large class of covariance matrices. By inverting the order of the Cholesky decomposition we also obtain a near-linear-time solver for elliptic PDEs
Multiscale Partition of Unity
We introduce a new Partition of Unity Method for the numerical homogenization
of elliptic partial differential equations with arbitrarily rough coefficients.
We do not restrict to a particular ansatz space or the existence of a finite
element mesh. The method modifies a given partition of unity such that optimal
convergence is achieved independent of oscillation or discontinuities of the
diffusion coefficient. The modification is based on an orthogonal decomposition
of the solution space while preserving the partition of unity property. This
precomputation involves the solution of independent problems on local
subdomains of selectable size. We deduce quantitative error estimates for the
method that account for the chosen amount of localization. Numerical
experiments illustrate the high approximation properties even for 'cheap'
parameter choices.Comment: Proceedings for Seventh International Workshop on Meshfree Methods
for Partial Differential Equations, 18 pages, 3 figure
Optimal Uncertainty Quantification
We propose a rigorous framework for Uncertainty Quantification (UQ) in which
the UQ objectives and the assumptions/information set are brought to the
forefront. This framework, which we call \emph{Optimal Uncertainty
Quantification} (OUQ), is based on the observation that, given a set of
assumptions and information about the problem, there exist optimal bounds on
uncertainties: these are obtained as values of well-defined optimization
problems corresponding to extremizing probabilities of failure, or of
deviations, subject to the constraints imposed by the scenarios compatible with
the assumptions and information. In particular, this framework does not
implicitly impose inappropriate assumptions, nor does it repudiate relevant
information. Although OUQ optimization problems are extremely large, we show
that under general conditions they have finite-dimensional reductions. As an
application, we develop \emph{Optimal Concentration Inequalities} (OCI) of
Hoeffding and McDiarmid type. Surprisingly, these results show that
uncertainties in input parameters, which propagate to output uncertainties in
the classical sensitivity analysis paradigm, may fail to do so if the transfer
functions (or probability distributions) are imperfectly known. We show how,
for hierarchical structures, this phenomenon may lead to the non-propagation of
uncertainties or information across scales. In addition, a general algorithmic
framework is developed for OUQ and is tested on the Caltech surrogate model for
hypervelocity impact and on the seismic safety assessment of truss structures,
suggesting the feasibility of the framework for important complex systems. The
introduction of this paper provides both an overview of the paper and a
self-contained mini-tutorial about basic concepts and issues of UQ.Comment: 90 pages. Accepted for publication in SIAM Review (Expository
Research Papers). See SIAM Review for higher quality figure
Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast
We consider divergence-form scalar elliptic equations and vectorial equations
for elasticity with rough (, )
coefficients that, in particular, model media with non-separated scales
and high contrast in material properties. We define the flux norm as the
norm of the potential part of the fluxes of solutions, which is equivalent to
the usual -norm. We show that in the flux norm, the error associated with
approximating, in a properly defined finite-dimensional space, the set of
solutions of the aforementioned PDEs with rough coefficients is equal to the
error associated with approximating the set of solutions of the same type of
PDEs with smooth coefficients in a standard space (e.g., piecewise polynomial).
We refer to this property as the {\it transfer property}.
A simple application of this property is the construction of finite
dimensional approximation spaces with errors independent of the regularity and
contrast of the coefficients and with optimal and explicit convergence rates.
This transfer property also provides an alternative to the global harmonic
change of coordinates for the homogenization of elliptic operators that can be
extended to elasticity equations. The proofs of these homogenization results
are based on a new class of elliptic inequalities which play the same role in
our approach as the div-curl lemma in classical homogenization.Comment: Accepted for publication in Archives for Rational Mechanics and
Analysi
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page