28,848 research outputs found

    Geometric distortion analysis of a wide-field astrograph

    Get PDF
    Ground-based optical navigation seeks to determine the angular position of a star, Solar System body, or laser-emitting spacecraft relative to objects with well-known coordinates. Measurement accuracies of 25 nrad would make optical techniques competitive with current radio metric technology. This article examines a proposed design for a wide-field astrograph and concludes that the deviation of an image centroid from the ideal projection can be modeled to the desired accuracy provided that the field of view does not exceed 5 deg on a side

    The use of ERTS/LANDSAT imagery in relation to airborne remote sensing for terrain analysis in Western Queensland, Australia

    Get PDF
    The author has identified the following significant results. LANDSAT 1 and 2 imagery contrast the geology of the Cloncurry-Dobbyn and the Gregory River-Mt. Isa areas very clearly. Known major structural features and lithological units are clearly displayed while, hitherto unknown lineaments were revealed. Throughout this area, similar rock types produce similar spectral signatures, e.g. quartzites produce light signatures, iron rich rocks produce dark signatures. More geological data are discernible at the 1:50,000 scale than on the 1:250,000 scale. Ore horizons may be identified at the 1:50,000 scale, particularly where they are associated with iron rich rocks. On the level plains north of Cloncurry, distinctive spectral signatures produced by the combined reflectances of plant cover, soils, and geology, distinguish different types of superficial deposits. Existing and former channels of the Cloncurry and Williams Rivers are distinguished at the 1:50,000 scale on both the LANDSAT 1 and 2 imagery. On the Cloncurry Plains, fence lines are discernible on the 1:50,000 LANDSAT 2 imagery

    Constraint Damping in First-Order Evolution Systems for Numerical Relativity

    Get PDF
    A new constraint suppressing formulation of the Einstein evolution equations is presented, generalizing the five-parameter first-order system due to Kidder, Scheel and Teukolsky (KST). The auxiliary fields, introduced to make the KST system first-order, are given modified evolution equations designed to drive constraint violations toward zero. The algebraic structure of the new system is investigated, showing that the modifications preserve the hyperbolicity of the fundamental and constraint evolution equations. The evolution of the constraints for pertubations of flat spacetime is completely analyzed, and all finite-wavelength constraint modes are shown to decay exponentially when certain adjustable parameters satisfy appropriate inequalities. Numerical simulations of a single Schwarzschild black hole are presented, demonstrating the effectiveness of the new constraint-damping modifications.Comment: 11 pages, 5 figure

    How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited

    Full text link
    In a recent paper dealing with maximum likelihood detection of gravitational wave chirps from coalescing binaries with unknown parameters we introduced an accurate representation of the no-signal cumulative distribution of the supremum of the whole correlator bank. This result can be used to derive a refined estimate of the number of templates yielding the best tradeoff between detector's performance (in terms of lost signals among those potentially detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed; figure replaced in version

    Mathematical analysis of a model for the growth of the bovine corpus luteum

    Get PDF
    The corpus luteum (CL) is an ovarian tissue that grows in the wound space created by follicular rupture. It produces the progesterone needed in the uterus to maintain pregnancy. Rapid growth of the CL and progesterone transport to the uterus require angiogenesis, the creation of new blood vessels from pre-existing ones, a process which is regulated by proteins that include fibroblast growth factor 2 (FGF2).\ud \ud In this paper we develop a system of time-dependent ordinary differential equations to model CL growth. The dependent variables represent FGF2, endothelial cells (ECs), luteal cells, and stromal cells (like pericytes), by assuming that the CL volume is a continuum of the three cell types. We assume that if the CL volume exceeds that of the ovulated follicle, then growth is inhibited. This threshold volume partitions the system dynamics into two regimes, so that the model may be classified as a Filippov (piecewise smooth) system.\ud \ud We show that normal CL growth requires an appropriate balance between the growth rates of luteal and stromal cells. We investigate how angiogenesis influences CL growth by considering how the system dynamics depend on the dimensionless EC proliferation rate, p5. We find that weak (low p5) or strong (high p5) angiogenesis leads to ‘pathological’ CL growth, since the loss of CL constituents compromises progesterone production or delivery. However, for intermediate values of p5, normal CL growth is predicted. The implications of these results for cow fertility are also discussed. For example, inadequate angiogenesis has been linked to infertility in dairy cows

    Deep-space navigation applications of improved ground-based optical astrometry

    Get PDF
    Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter

    Non-Newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm

    Get PDF
    Permission to redistribute provided by publishers.Three models of different stent designs implanted in a cerebral aneurysm, originating from the Virtual Intracranial Stenting Challenge'07, are meshed and the flow characteristics simulated using commercial computational fluid dynamics (CFD) software in order to investigate the effects of non-Newtonian viscosity and pulsatile flow. Conventional mass inflow and wall shear stress (WSS) output are used as a means of comparing the cfd simulations. In addition, a WSS distribution is presented, which clearly discriminates in favour of the stent design identified by other groups. It is concluded that non-Newtonian and pulsatile effects are important to include in order to avoid underestimating wss, to understand dynamic flow effects, and to discriminate more effectively between stent designs. © Authors 2011
    corecore