22,233 research outputs found
Dual laser optical system and method for studying fluid flow
A dual laser optical system and method is disclosed for visualization of phenomena in transport substances which induce refractive index gradients such as fluid flow and pressure and temperature gradients in fluids and gases. Two images representing mutually perpendicular components of refractive index gradients may be viewed simultaneously on screen. Two lasers having wave lengths in the visible range but separated by about 1000 angstroms are utilized to provide beams which are collimated into a beam containing components of the different wave lengths. The collimated beam is passed through a test volume of the transparent substance. The collimated beam is then separated into components of the different wave lengths and focused onto a pair of knife edges arranged mutually perpendicular to produce and project images onto the screen
The Final Remnant of Binary Black Hole Mergers: Multipolar Analysis
Methods are presented to define and compute source multipoles of dynamical
horizons in numerical relativity codes, extending previous work from the
isolated and dynamical horizon formalisms in a manner that allows for the
consideration of horizons that are not axisymmetric. These methods are then
applied to a binary black hole merger simulation, providing evidence that the
final remnant is a Kerr black hole, both through the (spatially)
gauge-invariant recovery of the geometry of the apparent horizon, and through a
detailed extraction of quasinormal ringing modes directly from the strong-field
region.Comment: 12 pages, 13 figures. Published version. Some references have been
added and reordered, and the figures cleaned up
Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy
Following the poor clinical results of antiangiogenic drugs, particularly when applied in isolation, tumour biologists and clinicians are now turning to combinations of therapies in order to obtain better results. One of these involves vessel normalisation strategies. In this paper, we investigate the effects on tumour growth of combinations of antiangiogenic and standard cytotoxic drugs, taking into account vessel normalisation. An existing multiscale framework is extended to include new elements such as tumour-induced vessel dematuration. Detailed simulations of our multiscale framework allow us to suggest one possible mechanism for the observed vessel normalisation-induced improvement in the efficacy of cytotoxic drugs: vessel dematuration produces extensive regions occupied by quiescent (oxygen-starved) cells which the cytotoxic drug fails to kill. Vessel normalisation reduces the size of these regions, thereby allowing the chemotherapeutic agent to act on a greater number of cells
The impact of cell crowding and active cell movement on vascular tumour growth
A multiscale model for vascular tumour growth is presented which includes systems of ordinary differential equations for the cell cycle and regulation of apoptosis in individual cells, coupled to partial differential equations for the spatio-temporal dynamics of nutrient and key signalling chemicals. Furthermore, these subcellular and tissue layers are incorporated into a cellular automaton framework for cancerous and normal tissue with an embedded vascular network. The model is the extension of previous work and includes novel features such as cell movement and contact inhibition. We presented a detailed simulation study of the effects of these additions on the invasive behaviour of tumour cells and the tumour's response to chemotherapy. In particular, we find that cell movement alone increases the rate of tumour growth and expansion, but that increasing the tumour cell carrying capacity leads to the formation of less invasive dense hypoxic tumours containing fewer tumour cells. However, when an increased carrying capacity is combined with significant tumour cell movement, the tumour grows and spreads more rapidly, accompanied by large spatio-temporal fluctuations in hypoxia, and hence in the number of quiescent cells. Since, in the model, hypoxic/quiescent cells produce VEGF which stimulates vascular adaptation, such fluctuations can dramatically affect drug delivery and the degree of success of chemotherapy
Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3
A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952
Which SMEs seek external support? Business characteristics, management behaviour and external influences in a contingency approach
To improve SME growth and competitiveness, governments often encourage business owner-managers to make use of external sources of support. Whether they seek this depends on the degree to which they perceive themselves to need assistance. Additionally its use can be constrained by market failures. In this paper, we model whether SME owner-managers seek information and advice from formal sources, including public and private providers. In 2011, the researchers conducted a telephone survey of 1202 SMEs (1-249 employees) in England to assess the use and non-use of external support between 2008 and 2011. Using a contingency approach, we model various influences on the use and non-use of formal support and identify those owner-managers who face more concerns but have less confidence in their capabilities. We find the demand for support, especially from private providers, is fuelled by a firm’s objective to grow and a size threshold, although this is moderated by various concerns which increase the likelihood of using public sources. The willingness to take informal advice can act as a stepping stone to using formal sources. Whilst market failures affected less than a fifth of firms, those with women directors were particularly affected as were newly founded firms
Oscillatory dynamics in a model of vascular tumour growth -- implications for chemotherapy
Background\ud
\ud
Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.\ud
Results\ud
\ud
By analysing a spatially uniform submodel, we identify regions of parameter space in which the combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady state, then steady travelling waves are observed in the full model, and the system evolves to the same stable steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one of λ-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the size of the tumour cell population are enhanced, compared to untreated controls.\ud
Conclusions\ud
\ud
We have developed a mathematical model of vascular tumour growth formulated as a system of partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to chemotherapy.\ud
Reviewers\ud
\ud
This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel
Modelling the response of vascular tumours to chemotherapy: A multiscale approach
An existing multiscale model is extended to study the response of a vascularised tumour to treatment with chemotherapeutic drugs which target proliferating cells. The underlying hybrid cellular automaton model couples tissue-level processes (e.g. blood flow, vascular adaptation, oxygen and drug transport) with cellular and subcellular phenomena (e.g. competition for space, progress through the cell cycle, natural cell death and drug-induced cell kill and the expression of angiogenic factors). New simulations suggest that, in the absence of therapy, vascular adaptation induced by angiogenic factors can stimulate spatio-temporal oscillations in the tumour's composition.\ud
\ud
Numerical simulations are presented and show that, depending on the choice of model parameters, when a drug which kills proliferating cells is continuously infused through the vasculature, three cases may arise: the tumour is eliminated by the drug; the tumour continues to expand into the normal tissue; or, the tumour undergoes spatio-temporal oscillations, with regions of high vascular and tumour cell density alternating with regions of low vascular and tumour cell density. The implications of these results and possible directions for future research are also discussed
Stress relief as the driving force for self-assembled Bi nanolines
Stress resulting from mismatch between a substrate and an adsorbed material
has often been thought to be the driving force for the self-assembly of
nanoscale structures. Bi nanolines self-assemble on Si(001), and are remarkable
for their straightness and length -- they are often more than 400 nm long, and
a kink in a nanoline has never been observed. Through electronic structure
calculations, we have found an energetically favourable structure for these
nanolines that agrees with our scanning tunneling microscopy and photoemission
experiments; the structure has an extremely unusual subsurface structure,
comprising a double core of 7-membered rings of silicon. Our proposed structure
explains all the observed features of the nanolines, and shows that surface
stress resulting from the mismatch between the Bi and the Si substrate are
responsible for their self-assembly. This has wider implications for the
controlled growth of nanostructures on semiconductor surfaces.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
- …