3 research outputs found

    An Analysis on Spatiotemporal Variations of Soil and Vegetation Moisture from a 29 year Satellite Derived Dataset over Mainland Australia

    Get PDF
    The spatiotemporal behavior of soil and vegetation moisture over mainland Australia was analyzed using passive microwave observations by four satellites going back to late 1978. Differences in measurement specifications prevented merging the data directly. A continuous product was developed for Australia by scaling percentiles of the cumulative moisture distribution within each grid cell to the percentiles of a reference sensor. The coefficient of correlation and root-mean-square error between rescaled values and the reference generally suggest good agreement. Using the merged data product, a strong El Nino-Southern Oscillation signal in near-surface hydrology across Australia was confirmed. Spatial patterns of trends in annual averages show that western and northwestern Australia have experienced an increase in vegetation moisture content, while the east and southeast experienced a decrease. Soil moisture showed a similar spatial pattern but with larger regions experiencing a decrease. This could be explained by decreasing rainfall and increasing potential evapotranspiration during the extended winter period (May-September). The results give us reasonable confidence in the time series of soil and vegetation moisture derived by the scaling method developed in this study. Development of a global data set along these lines should enable better estimation of hydrological variables and should increase understanding of the impacts of ocean circulations on terrestrial hydrology and vegetation dynamics. Copyright 2009 by the American Geophysical Union

    Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers

    Get PDF
    Within the scope of the upcoming launch of a new water related satellite mission (SMOS) a global evaluation study was performed on two available global soil moisture products. ERS scatterometer surface wetness data was compared to AMSR-E soil moisture data. This study pointed out a strong similarity between both products in sparse to moderate vegetated regions with an average correlation coefficient of 0.83. Low correlations were found in densely vegetated areas and deserts. The low values in the vegetated regions can be explained by the limited soil moisture retrieval capabilities over dense vegetation covers. Soil emission is attenuated by the canopy and tends to saturate the microwave signal with increasing vegetation density, resulting in a decreased sensor sensitivity to soil moisture variations. It is expected that the new low frequency satellite mission (SMOS) will obtain soil moisture products with a higher quality in these regions. The low correlations in the desert regions are likely due to volume scattering or to the dielectric dynamics within the soil. The volume scattering in dry soils causes a higher backscatter under very dry conditions than under conditions when the sub-surface soil layers are somewhat wet. In addition, at low moisture levels the dielectric constant has a reduced sensitivity in response to changes in the soil moisture content. At a global scale the spatial correspondence of both products is high and both products clearly distinguish similar regions with high seasonal and inter annual variations. Based on the global analyses we concluded that the quality of both products was comparable and in the sparse to moderate vegetated regions both products may be beneficial for large scale validation of SMOS soil moisture. Some limitations of the studied products are different, pointing to significant potential for combining both products into one superior soil moisture data set. © The Author(s) 2008

    Remote sensing of agricultural drought monitoring: A state of art review

    No full text
    corecore