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[1] The spatiotemporal behavior of soil and vegetation moisture over mainland Australia
was analyzed using passive microwave observations by four satellites going back to
late 1978. Differences in measurement specifications prevented merging the data directly.
A continuous product was developed for Australia by scaling percentiles of the cumulative
moisture distribution within each grid cell to the percentiles of a reference sensor. The
coefficient of correlation and root-mean-square error between rescaled values and the
reference generally suggest good agreement. Using the merged data product, a strong
El Niño–Southern Oscillation signal in near-surface hydrology across Australia was
confirmed. Spatial patterns of trends in annual averages show that western and
northwestern Australia have experienced an increase in vegetation moisture content, while
the east and southeast experienced a decrease. Soil moisture showed a similar spatial
pattern but with larger regions experiencing a decrease. This could be explained by
decreasing rainfall and increasing potential evapotranspiration during the extended winter
period (May–September). The results give us reasonable confidence in the time series of
soil and vegetation moisture derived by the scaling method developed in this study.
Development of a global data set along these lines should enable better estimation of
hydrological variables and should increase understanding of the impacts of ocean
circulations on terrestrial hydrology and vegetation dynamics.
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1. Introduction

[2] Soil moisture plays an important role in water and
energy balance at the interface between the land surface and
the atmosphere, and this role has been studied with various
models regionally and globally [Cherkauer et al., 2003;
Dickinson et al., 1986; Liang et al., 1994; Wigmosta et al.,
1994; Wood, 1991]. Previous studies indicate that the
assimilation of passive microwave observed near-surface
soil moisture can reduce errors in forecasting soil moisture
profile as a result of poor initialization and improve the
resulting predictions of runoff and evapotranspiration
[Pauwels et al., 2001; Walker and Houser, 2001; Wigneron
et al., 1999]. Reichle et al. [2007] found that the estimates
from the assimilation of soil moisture retrievals from
passive microwave observations are superior to those from
the satellite or model data alone. That is, long-term passive
microwave observations of near-surface soil moisture can
be utilized for more accurate and reliable estimates of

deeper soil moisture, evapotranspiration and runoff, and
consequently better understanding of feedback mechanisms
between different hydrological components, but such a
long-term soil moisture data set is not currently available.
[3] A recently developed approach to retrieving surface

parameters from microwave emissions can in principle be
used for all low-frequency bands (<20 GHz) in the micro-
wave domain [De Jeu and Owe, 2003; Owe et al., 2001,
2008; Wagner et al., 2007]. This approach enables us to
collect the worldwide data of soil moisture and vegetation
water content by four different satellites since late 1978.
However, these four satellites cover different time periods
and differences in measurement specifications of different
instruments prevent merging the data directly.
[4] The objective of this paper is twofold. First is to

develop a methodology to merge a 29-year time series of
soil moisture and vegetation optical depth compiled from
different passive microwave instruments covering the
period from October 1978 through December 2006 across
mainland Australia.
[5] The second aim is to evaluate the merged product

through statistical analyses. Using the moisture retrievals
from the TRMM satellite (1998–2005) only, Liu et al.
[2007] investigated the spatiotemporal patterns in soil and
vegetation moisture across Australia. The results suggested
that the drought conditions in eastern Australia since 2000
have a strong connection with El Niño. During El Niño

1School of Civil and Environmental Engineering, University of
New South Wales, Sydney, New South Wales, Australia.

2Black Mountain Laboratory, CSIRO Land and Water, Canberra, ACT,
Australia.

3Department of Hydrology and Geo-Environmental Sciences, Faculty of
Earth and Life Sciences, Vrije Universiteit, Amsterdam, Netherlands.

Copyright 2009 by the American Geophysical Union.
0043-1397/09/2008WR007187

W07405

WATER RESOURCES RESEARCH, VOL. 45, W07405, doi:10.1029/2008WR007187, 2009

1 of 12



events, droughts are normally experienced in Australia and
consequently a reduction in vegetation and primary produc-
tion occurs [Ogallo, 1988; Ropelewski and Halpert, 1987].
However, the period from 1998 through 2005 only covered
the moderate 2002 El Niño event. Using a merged data set
covering from late 1978 through 2006, we will reinvestigate
the impacts of the El Niño–Southern Oscillation (ENSO)
on soil moisture and vegetation condition across mainland
Australia to identify whether the high correlations found in
the previous study are maintained. In addition, we perform a
linear trend analysis to detect the long-term change in soil
and vegetation moisture over the study period. As a means
of evaluation of the merged product, we will compare these
with the results of similar correlation and trend analysis
using interpolated rainfall observations and soil moisture
derived from macroscale hydrology models for the same
period.

2. Data and Methods

2.1. Soil Moisture and Optical Depth

[6] The passive microwave (PM) data used in this study
are derived from six separate instruments on four missions:
the scanning multichannel microwave radiometer (SMMR)
on board the Nimbus 7 satellite, the Special Sensor Micro-
wave Imager (SSM/I) on the F8, F11 and F13 satellites from
the Defense Meteorological Satellite Program (DMSP), the
microwave imager from the Tropical Rainfall Measuring
Mission (TRMM), and the Advanced Microwave Scanning

Radiometer–Earth Observing System (AMSR-E) aboard
the Aqua satellite. All sensors have several common wave
bands, while some additional wave bands are either unique
or common to only two or three of the satellite systems.
Specifications for the different sensors are listed in Table 1.
The best estimates of soil and vegetation moisture can be
expected from the radiometers with the lowest frequency
(i.e., SMMR with 6.6 GHz and AMSR with 6.9 GHz), but
the available observations mean that sometimes less optimal
frequencies need to be used.
[7] Both soil moisture (q, m3 m�3) and vegetation optical

depth (t, dimensionless) were retrieved from brightness
temperatures (TB) observed by different satellites using
the Land Parameter Retrieval Model (LPRM) [Owe et al.,
2008]. Optical depth (t) can be interpreted as an indicator of
the canopy density that is directly proportional to vegetation
water content at any certain frequency [Jackson and
O’Neill, 1990; Jackson and Schmugge, 1991] and was
derived following Meesters et al. [2005].
[8] Figure 1 shows time periods of q and t retrievals from

different instruments used in this study. SSM/I retrievals are
only available for the F8, F11 and F13, which is limited by
the availability of SSM/I TB data products from the National
Snow and Ice Data Center (NSIDC).

2.2. Data Quality Control

[9] Microwave frequency and overpass time are two
important factors that influence the absolute value of
retrieved q and t [Cashion et al., 2005; Derksen et al.,

Table 1. Comparisons of Major Characteristics of Six PM Instruments on Four Satellites

SMMR SSM/I TMI AMSR-1

Platform Nimbus 7 DMSP F8, F11, F13 TRMM AQUA
Time series Oct 1978 to Aug 1987 F8, Sep 1987 to

Dec 1991; F11, Dec 1991 to
Sep 1995 F13, May 1995

to present

Dec 1997 to present
(boosted in Aug 2001)

May 2002 to present

Channel used (GHz) 6.6 19.3 10.7 6.9
Spatial resolution (km) 150 69 � 43 59 � 36 76 � 44
Spatial coverage global global N38� to S38� global
Swath width (km) 780 1400 780, after boost 897 km 1445
Approximate equatorial
crossing time

ascending, noon;
descending, midnight

F8, ascending, 0630;
F11/13,

descending, 0630

completing an orbit
every 91 min,

making 15.7 orbits per day

ascending, 1330;
descending, 0130

Temporal resolution alternate day daily several times per day several times per day

Figure 1. Time span of available soil and vegetation moisture estimates retrieved from different
satellites used in udy.
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2000]. In theory, lower microwave frequency leads to more
accurate estimates; with increasing microwave frequency,
the attenuation by vegetation increases [Jackson and
Schmugge, 1995; Njoku and Entekhabi, 1996]. Hence q
and t retrievals used in this analysis were derived from the
lowest microwave frequency of each instrument. Diurnal
variation of soil temperature and moisture content may be
considerable [Raju et al., 1995] and therefore the time of
overpass can influence absolute retrieved q. We used the
observations acquired by ascending passes of SSM/I F8 and
descending passes of SSM/I F11/13, which have similar
overpass time, around 6:30 A.M. local time. For SMMR
and AMSR-E, only the observations acquired by descend-
ing passes were used as the minimal temperature gradients
at midnight are more favorable for the retrievals [De Jeu,
2003].
[10] The retrieved q and t were resampled from the

original resolution (Table 1) into daily averages at 0.25�
(about 25 km) for late 1978 through 2006 for mainland

Australia. (Tasmania was excluded because it is not covered
by the TRMM satellite.) Spatial resampling was conducted
before the temporal resampling. If a grid cell had more than
one value per day, then all values for that day were
averaged. The resampled daily data was further converted
to monthly averages. Because of power constraints on the
platform and the considerably narrower swath width for
SMMR, there are only up to around five soil moisture
retrievals from descending passes per month for SMMR. A
monthly average calculated from more than three daily
values was considered valid.
[11] As stated, the attenuation by vegetation increases

with increasing microwave frequency, which may result in
invalid q retrievals over the regions with highly dense
vegetation. In this analysis, some SSM/I q retrievals are
missing for the tropical northern Australia throughout the
whole year (Figure 2). Over the southeast coastal region and
the southwest of Western Australia, some SSM/I q retrievals
are missing for two or three months every year. The most
likely reason is that the Ku band wavelength of SSM/I is too
short to penetrate the dense vegetation cover. Missing data
is rarely observed in q retrievals from SMMR, TRMM or
AMSR-E.
[12] The drift of the SSM/I sensor could be an issue,

particularly when deriving long-term trends [Wentz and
Schabel, 2000]. The information from the National Snow
and Ice Data Center [Armstrong et al., 1994] and the
Remote Sensing Systems (RSS) indicate that the ascending
equatorial time of F8 at launch was 6:15 A.M. and almost
no sensor drift was detected until it was decommissioned in
December 1991. The descending equatorial time of F11
drifted from 6:11 A.M. to 6:25 A.M. between December
1991 and September 1995, while F13 has drifted from
5:42 A.M. to 6:33 A.M. since launched in 1995.
[13] We examined monthly averages of SSM/I q retrievals

over the period from 1987 through 2006. The fluctuations
are in agreement with the rainfall variations for the same
period, e.g., relatively wet in 1989, 1999, 2000 and 2001,
and relatively dry during 1992 through 1995 and 2002/
2003. No significant drift of absolute values of retrieved q
was observed. Hence, the impact of SSM/I sensor drift on
this study is considered acceptable. The most likely reason

Figure 2. Map of Australia (10�S–40�S, 110�E–160�E)
showing the extent of missing SSM/I q retrievals for tropical
northern Australia throughout the whole year. Most likely,
data missing is due to the dense vegetation cover and high
microwave frequency of SSM/I.

Figure 3. Monthly average of q retrievals from SMMR, SSM/I, TRMM, and AMSR-E over mainland
Australia exclu e tropical north with missing data shown in Figure 2.
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is that there is little change in moisture dynamics during
the overpass time—approximately between 5:30 A.M. and
6:30 A.M. No significant drift was observed in the monthly
SSM/I t retrievals.

2.3. Data Merging

[14] Differences in sensor specifications, particularly dif-
ferent microwave frequencies and spatial resolutions, result
in different absolute values of estimated q and t. Figure 3
shows monthly averages of q retrievals from different
instruments over mainland Australia excluding the tropical
north with missing data shown in Figure 2. Figure 4 shows
the continental monthly averages of t retrievals. For q, the
satellite observations represent a soil sampling depth rang-
ing from about 0.5 cm to 1.5 cm, depending on the
microwave frequencies [Owe et al., 2008]. Kirdiashev et

al. [1979] stated that t is directly related to the wavelength
and therefore it differs at different frequencies. Additionally,
varying absolute values can be partially attributed to differ-
ent original spatial resolutions. For example, SMMR has a
coarse spatial resolution (�150 km); thus the influence of
ocean water on the microwave signals extends further
inland and may leads to relatively high absolute values of
SMMR retrievals.
[15] Despite q and t retrieved from different instruments

having different absolute values, they show similar seasonal
patterns, which creates the possibility for rescaling and
merging to yield a long-term data set. AMSR-E was
selected as the reference against which other q and t
retrievals are rescaled, because it has a relatively low
measuring frequency, high spatial and temporal resolution,
and is still operational.

Figure 4. Continental monthly average of t retrievals from SMMR, SSM/I, TRMM, and AMSR-E.

Figure 5. (left) Cumulative frequency distributions of q of an example grid cell at 24.5�S, 114�E.
TRMM retrievals were adjusted against AMSR-E retrievals. The 0th, 5th, 10th, 25th, 50th, 75th, 90th,
95th and 100th percentiles of AMSR-E and TRMM are marked, dividing the distribution of q into eight
segments. (right) Regression lines of TRMM against AMSR-E. Data in different segments have different
adjusting equatio
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[16] The cumulative distribution function (CDF) match-
ing technique was chosen as the rescaling method. Similar
CDF matching approaches have been successfully used in
the past. Reichle and Koster [2004] merged satellite soil
moisture observations with model data by CDF matching,
and both Anagnostou et al. [1999] and Atlas et al. [1990]
established reflectivity-rainfall relationships for calibration
of radar or satellite observations of precipitation using CDF
matching.
[17] The CDF method was applied cell by cell. One

example is shown in Figure 5. The 0th, 5th, 10th, 25th,
50th, 75th, 90th, 95th and 100th percentiles of AMSR-E
and TRMM were used to divide the cumulative distribution
into eight segments. The same percentile values of TRMM
are plotted against those of AMSR-E. Eight linear equations
were obtained to adjust TRMM data falling into different
segments against AMSR-E data.
[18] The rescaling procedure was applied on the monthly

averages of q and t retrievals according to the following
steps.
[19] 1. Rescale TRMM against AMSR-E using data for

the overlapping period (July 2002 to December 2006) for
the scaling parameters (linear equations).
[20] 2. Use the scaling equations derived from step 1 to

rescale TRMM data for the period from January 1998
through June 2002, pro rescaled TRMM (TRMM*,

hereafter * refers to rescaled values). When the data values
to be rescaled in step 2 lie outside of the range of the data in
step 1, we used the scaling equation of the closest value in
the data in step 1.
[21] 3. Merge TRMM* (January 1998 to June 2002) with

AMSR-E (July 2002 to December 2006), producing
TRMM*–AMSR-E.
[22] 4. Rescale SSM/I against TRMM*–AMSR-E using

data for the overlapping period (January 1998 to June 2004)
for the scaling parameters.
[23] 5. Use the scaling equations derived from step 4 to

rescale SSM/I data for the period from August 1998 through
December 1997, producing SSM/I*. When the data values
to be rescaled in step 5 lie outside of the range of the data in
step 4, we used the scaling equation of the closest value in
the data in step 4.
[24] 6. Merge SSM/I* (August 1987 to December 1997)

with TRMM*–AMSR-E producing SSM/I*–TRMM*–
AMSR-E.
[25] 7. Retrievals from SMMR capture the identical

season pattern as SSM/I, TRMM and AMSR-E (Figures 6
and 7). The period of SSM/I*–TRMM*–AMSR-E (August
1987 to December 2006) covers the extremely wet year
(2000) and dry year (2002); thus the range of SMMR
retrievals should be within the range of SSM/I* –
TRMM*–AMSR-E retrievals. We made the assumption

Figure 6. (a and b) R2 between TRMM* and AMSR-E (after removing the seasonal cycle) for the
overlapping period (winter 2002 to spring 2006). (c and d) R2 between SSM/I* and TRMM*–AMSR-E
(after removing the seasonal cycle) for the overlapping period (summer 1998 to spring 2006).
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that the cumulative distribution of monthly values is iden-
tical for SSM/I*–TRMM*–AMSR-E as for SMMR, pro-
ducing SMMR* (December 1978 to July 1987).
[26] 8. Obtain SMMR*– SSM/I*–TRMM*–AMSR-E

(December 1978 to December 2006).
[27] The rescaled q and t were converted to seasonal

averages for this study. Four seasons are defined as summer
(December–February; summer 1979 refers to December
1978 to February 1979, and so on), autumn (March–May),
winter (June–August) and spring (September–November).
A season average calculated from at least 2 valid monthly
data was considered valid. The analyses reported here refer
to seasonal averages.

2.4. Southern Oscillation Index

[28] The ocean circulation indicator used in this study
was the Southern Oscillation Index (SOI). The ENSO cycle
of alternating warm El Niño and cold La Niña events is the
dominant global climate signal, originating in the tropical
Pacific through interactions between the ocean and the
atmosphere [McPhaden et al., 2006]. The SOI used is the
standardized anomaly of the mean sea level pressure differ-
ence between Tahiti and Darwin (Troup SOI) [McBride and
Nicholls, 1983], and a time series was obtained from the
Australia Bureau of Meteorology (http://www.bom.gov.au/
climate/current/soihtm1.shtml). During El Niño years, the
SOI index is below average and below average rainfall is

often observed, while La Niña events during which the SOI
index is above average often brings greater rainfall.

2.5. Statistical Methods

[29] Spearman’s (nonparametric) correlation analysis was
used in this study to investigate the correlations between
seasonal q, t and rainfall versus the SOI. This was chosen
because it does not require any assumptions about the
nature of the relationship, as long as it is monotonic. Linear
trend analysis was applied to detect the trend of the annual
average and the spatial distribution of trends over the study
period.
[30] The patterns in q and t would be expected to be

related to rainfall, and to perhaps a lesser extent, potential
evapotranspiration (PET). This provides an opportunity for
a limited evaluation of merged data set. Gridded rainfall and
PET data for mainland Australia for the same period were
also included in the analysis for comparison. Gridded
rainfall and PET data across Australia were interpolated
from point observations by the Queensland Department of
Natural Resources and Mines (http://www.longpad-
dock.qld.gov.au/silo/). The original 0.05�-resolution gridded
data was resampled into 0.25� resolution to allow direct
comparison.
[31] In addition, soil moisture derived from macroscale

hydrological models, the Community Land Model (CLM),
Mosaic (MOS) and NOAH, generated by the Global Land

Figure 7. (a and b) RMSE between TRMM* and AMSR-E (after removing the seasonal cycle) for the
overlapping period (winter 2002 to spring 2006). (c and d) RMSE between SSM/I* and TRMM*–
AMSR-E (after removing the seasonal cycle) for the overlapping period (summer 1998 to spring 2006).
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Data Assimilation System (GLDAS) (ftp://agdisc.gsfc.
nasa.gov/data/s4pa/GLDAS/) were included for comparison
and evaluation purposes. The GLDAS was developed
jointly by scientists from NASA and NOAA, aiming at

generating optimal fields of water and energy cycle states
and fluxes. It is a global offline terrestrial modeling system,
ingesting satellite and ground-based observations by using
advanced land surface modeling and data assimilation

Figure 8. The locations of three selected grid cells: northern Australia (14.5�S, 133.75�E), southeastern
Australia (35.75�S, 142.5�E), and southwestern Australia (31.5�S, 117.5�E).

Figure 9. Seasonal average of rainfall, q, and t for three grid cells from (a and d) northern, (b and e)
southeastern, a nd f) southwestern Australia.
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techniques [Rodell et al., 2004]. The depths of the topsoil
layer of these three models are 1.8, 2 and 10 cm, respec-
tively, and the spatial resolution of these soil moisture
products is 1�.

3. Results

3.1. Merging Data Sets

[32] Hereafter, q and t values refer to seasonal averages
of merged SMMR*–SSM/I*–TRMM*–AMSR-E (summer
1979 to spring 2006) time series. To evaluate the uncertainty
of the rescaled products, we removed the seasonal cycle
and calculated the correlation coefficient (R2) and root-
mean-square error (RMSE) between residual rescaled q
and t values and the reference (Figures 6 and 7). ‘‘Error’’
is not how differences should be interpreted, as both obser-
vations have heterogeneous uncertainties.
[33] Higher R2 and lower RMSE suggest that the agree-

ment between rescaled values and the reference is better.
Figures 6 and 7 show that rescaled TRMM values (both q
and t) agree well with the reference and so do the rescaled
SSM/I t retrievals. For the rescaled SSM/I q retrievals, low
R2 and high RMSE are observed along the coast, particu-
larly the eastern coast. This may be attributed to the
relatively high microwave frequency of SSM/I (19.4 GHz)
and dense vegetation in these coastal regions; with increas-
ing frequency, the attenuation by vegetation increases and
the accuracy of the estimat eclines. The R2 and RMSE

between SMMR* and SSM/I*–TRMM*–AMSR-E could
not be calculated as they only have a very brief overlapping
period (2 months).
[34] Seasonal rainfall, q and t for three locations (Figure 8)

are shown in Figure 9. For the northern location, q generally
peaks in summer, which is in agreement with rainfall. t peaks
in autumn, one season behind q. q is missing from late 1987
through the end of 1997. This period is covered by SSM/I
which has high microwave frequency of 19.4 GHz. It is
observed that q is rarely missing for the southeastern and
southwestern locations during the same period, because the
vegetation at these two locations is not as dense as in
northern Australia. For the two southern locations, q peaks
simultaneously with rainfall in winter, and t peaks in spring,
which also reveals the lag between q and t.

3.2. Correlations With SOI

[35] The correlation of q and t retrievals with SOI was
investigated using Spearman’s correlation analysis.
Figure 10 shows that the signals of SOI in q retrievals are
similar to rainfall and signals in t are more or less one
season behind rainfall and q. Spring and winter are the most
affected seasons. In winter, rainfall and q over the east are
influenced. In spring, SOI affects rainfall and q over
northern and eastern Australia, and t in the southeast.
SOI can explain more than 50% of the temporal variation
of t over the southeast in spring and q over the north in
winter. The winter/spring period is the wet season for
southeastern and the dry season for northern Australia. In
the dry season, zero rainfall and extremely low q and t are
quite common in some northern and central parts; thus it is

Figure 10. Spearman’s correlation coefficients (r2) be-
tween rainfall, q, t, and SOI index. Light gray regions are
significant at p = 0.05 or better, and dark gray and black
regions are significant at p = 0.01.

Figure 11. Same as Figure 10 but for model-derived q
from the CLM, MOS, and NOAH models. They represent q
from the top 1.8, 2, and 10 cm, respectively.
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not surprisingly that the SOI has no significant effects in
these regions.
[36] The correlation between model-derived q and SOI

was also presented for comparison and evaluation purposes
(Figure 11). The spatial patterns of the correlations are
comparable between remotely sensed and model-derived q.

3.3. Trend Analysis

[37] Spatial patterns of simple linear trends in annual
averages are shown in Figure 12. It is noted that these trends
can in principle simply be the result of temporal rainfall
distribution rather than reflecting a real underlying climate
trend. In general, western and northwestern Australia expe-
rienced an increasing rainfall trend over the period from
1979 through 2006, while eastern and southeastern Australia
experienced a decreasing trend. The regions with decreasing
q are larger than decreasing rainfall, particularly in the
southwest of Australia. The spatial pattern of trend in t is
similar to rainfall. The results derived from modeled soil
moisture also indicate that both eastern and southwestern
Australia experienced decreasing trends during the analyzed
period (Figure 13).
[38] The discrepancy of trends in annual rainfall and q

over the southwest of Australia can be explained by
considering the seasonal pattern of rainfall and PET. For
the southwest of Australia, extended winter (May–
September) is the wetter season with great rainfall, low
temperature and low PET; extended summer (October–

April) is the drier season with low rainfall, high temperature
and high PET. Thus the annual q is dominated by the
rainfall and PET during the wetter season. Figure 14 shows
that the wetter season became drier as a result of decreasing
rainfall and increasing PET, and the drier season became
wetter. The increasing rainfall in the drier season compen-
sated the decreasing rainfall in the wetter season, resulting
in the increasing annual rainfall. However, the annual q still
decreased because it is dominated by the changes in the
wetter season. As for eastern Australia, the consistently
decreasing rainfall and increasing PET lead to the decreas-
ing q and t.
[39] As stated in section 2.2, q derived from SMMR

(1978–1987) were rescaled against q retrieved from SSM/
I, TRMM and AMSR-E (1987–2006) on the basis of the
assumption that the range of SMMR retrievals should be
within the range of SSM/I*–TRMM*–AMSR-E retrieval
as they do not have any overlapping period. To compre-
hensively investigate the long-term changes in q, the annual
changes in rainfall, q and t over the period from 1988
through 2006 are calculated (Figure 15) and so are the q
derived from GLDAS models (Figure 16). As can be seen,
satellite observed q and t, and model-derived q show
similar spatial patterns following the changes in rainfall
for the same period. The western and northwestern Australia
experienced an increasing rainfall trend over the period
from 1988 through 2006, while eastern and southeastern
Australia experienced a decreasing trend, which is in line

Figure 12. Spatial distributions of changes in annual rainfall, q, and t over the period from 1979
through 2006. The percentage represents the annual change relative to the average over the period from
1979 through 2006.

Figure 13. Same as Figure 12 but for model-derived soil moisture. The percentage represents the
annual change relative to the average over the period from 1979 through 2006.
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with the results of the longer term from 1979 through 2006
(Figures 13 and 14).

4. Discussion and Conclusions

[40] The R2 between seasonal TRMM* values and
AMSR-E is generally greater than 0.6. The RMSE between
seasonal q from TRMM* and AMSR-E is mostly less than
0.04 m3 m�3 and the RMSE of t is less than 0.04. This
illustrates that the TRMM* time series agrees well with
AMSR-E. The R2 and RMSE between seasonal t from
SSM/I* and TRMM*–AMSR-E are generally greater than
0.6 and less than 0.04, respectively. When removing the

seasonal signal, there is disagreement in q anomalies (R2 <
0.2 and RMSE > 0.06) along the northern and eastern coast.
The missing q data over northern Australia are expected to
be mainly due to the high microwave frequency of SSM/I
(19.4 GHz) and dense vegetation in the north.
[41] The correlation analysis using 29 years of q and t

retrievals and SOI index shows similar results to a previous
study using the data of 8 years [Liu et al., 2007]. The
dominant temporal and patterns are strongly correlated with
SOI index in spring and winter, and to a lesser extent
autumn and summer. This is also in line with the findings
of Dai et al. [1997] that the SOI signal in precipitation is

Figure 14. Spatial distributions of changes in the rainfall and potential evapotranspiration (PET) during
extended winter (May–September) and summer (October–April) over the period from 1979 through
2006. The percentage represents the change per year relative to the average over the period from 1979
through 2006.

Figure 15. Spatial distributions of changes in annual rainfall, q, and t over the period from 1988
through 2006. The percentage represents the annual change relative to the average over the period from
1988 through 2006.
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the strongest in spring (September–November) over the
Australia-Indonesia region. The 29-year data covers several
El Niño and La Niña events, and therefore our results
provide further evidence that ENSO can be linked to the
sequence of wet and dry conditions since late 1978.
[42] The consistently decreasing rainfall and increasing

PET during the entire year over eastern and southeastern
Australia result in declines in q and t. In southwestern
Australia, the annual q is dominated by the extended winter
(May–September). With the decreasing rainfall and increas-
ing PET during the extended winter, the trend in annual q
over southwestern Australia is negative.
[43] The merged product has uncertainties due to the

inherent characteristics of passive microwave techniques
and the CDF matching approach used in this study. At least
in theory, lower microwave frequency leads to more accu-
rate estimates; with increasing microwave frequency
(shorter wavelength), the penetration ability of microwave
declines and the attenuation by vegetation increases, even
resulting in invalid q retrievals (Figure 2). In this study,
retrievals from TRMM (10.7 GHz) and SSM/I (19.3 GHz)
are less accurate than those from SMMR (6.9 GHz) and
AMSR-E (6.6 GHz), mainly because of more disturbing
influences of vegetation. Varying microwave frequencies
are associated with different soil sampling depths and
vegetation optical depth signals. Therefore, both spatial
and temporal errors of retrievals from different instruments
are heterogeneous and may be propagated in the merged
products in a complex manner. In addition, the CDF
matching approach might affect the means of retrievals
from SMMR, SSM/I and TRMM and the resulting trend
of the merged products over the analyzed period. The
uncertainty is greater in the SMMR* products, as SMMR
has no overlapped period with other instruments and the
rescaling is based on the assumption that the range of
SMMR retrievals should be within the range of SSM/I*–
TRMM*–AMSR-E retrieval. However, the long-term
trends for the period with and without the SMMR* products
show similar patterns, in agreement with changes in the
concurrent rainfall and PET. These uncertainties should be
kept in mind while using the merged products.
[44] Despite of these inherent uncertainties, this study

confirmed the strong impact of ENSO on the near-surface
hydrology across Australia and allowed some long-term
trends in annual q and t to be identified and attributed.
The agreements with previous studies and the model-derived

q give us reasonable confidence in the time series of soil and
vegetation moisture derived by the scaling method devel-
oped here. Development of a global data set along these lines
should enable better estimation of hydrological variables and
increase understanding of the impacts of ocean circulations
on terrestrial hydrology and vegetation dynamics.
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