26 research outputs found

    Ionotropic GABA and glycine receptor subunit composition in human pluripotent stem cell-derived excitatory cortical neurones

    Get PDF
    We have assessed, using whole-cell patch-clamp recording and RNA-sequencing (RNA-seq), the properties and composition of GABA(A) receptors (GABA(A)Rs) and strychnine-sensitive glycine receptors (GlyRs) expressed by excitatory cortical neurons derived from human embryonic stem cells (hECNs). The agonists GABA and muscimol gave EC(50) values of 278 μm and 182 μm, respectively, and the presence of a GABA(A)R population displaying low agonist potencies is supported by strong RNA-seq signals for α2 and α3 subunits. GABA(A)R-mediated currents, evoked by EC(50) concentrations of GABA, were blocked by bicuculline and picrotoxin with IC(50) values of 2.7 and 5.1 μm, respectively. hECN GABA(A)Rs are predominantly γ subunit-containing as assessed by the sensitivity of GABA-evoked currents to diazepam and insensitivity to Zn(2+), together with the weak direct agonist action of gaboxadol; RNA-seq indicated a predominant expression of the γ2 subunit. Potentiation of GABA-evoked currents by propofol and etomidate and the lack of inhibition of currents by salicylidine salycylhydrazide (SCS) indicate expression of the β2 or β3 subunit, with RNA-seq analysis indicating strong expression of β3 in hECN GABA(A)Rs. Taken together our data support the notion that hECN GABA(A)Rs have an α2/3β3γ2 subunit composition – a composition that also predominates in immature rodent cortex. GlyRs expressed by hECNs were activated by glycine with an EC(50) of 167 μm. Glycine-evoked (500 μm) currents were blocked by strychnine (IC(50) = 630 nm) and picrotoxin (IC(50) = 197 μm), where the latter is suggestive of a population of heteromeric receptors. RNA-seq indicates GlyRs are likely to be composed of α2 and β subunits

    BALB/c Mice Deficient in CD4+ T Cell IL-4Rα Expression Control Leishmania mexicana Load although Female but Not Male Mice Develop a Healer Phenotype

    Get PDF
    Immunologically intact BALB/c mice infected with Leishmania mexicana develop non-healing progressively growing lesions associated with a biased Th2 response while similarly infected IL-4Rα-deficient mice fail to develop lesions and develop a robust Th1 response. In order to determine the functional target(s) for IL-4/IL-13 inducing non-healing disease, the course of L. mexicana infection was monitored in mice lacking IL-4Rα expression in specific cellular compartments. A deficiency of IL-4Rα expression on macrophages/neutrophils (in LysMcreIL-4Rα−/lox animals) had minimal effect on the outcome of L. mexicana infection compared with control (IL-4Rα−/flox) mice. In contrast, CD4+ T cell specific (LckcreIL-4Rα−/lox) IL-4Rα−/− mice infected with L. mexicana developed small lesions, which subsequently healed in female mice, but persisted in adult male mice. While a strong Th1 response was manifest in both male and female CD4+ T cell specific IL-4Rα−/− mice infected with L. mexicana, induction of IL-4 was manifest in males but not females, independently of CD4+ T cell IL-4 responsiveness. Similar results were obtained using pan-T cell specific (iLckcreIL-4Rα−/lox) IL-4Rα−/− mice. Collectively these data demonstrate that upon infection with L. mexicana, initial lesion growth in BALB/c mice is dependent on non-T cell population(s) responsive to IL-4/IL-13 while progressive infection is dependent on CD4+ T cells responsive to IL-4

    Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy

    Get PDF
    Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients’ primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy

    Butyrate modulates TGF-beta1 generation and function: potential renal benefit for Acacia(sen) SUPERGUM (gum arabic)?

    Get PDF
    Anecdotal evidence suggests that high fibre supplementation of dietary intake may have health benefits in renal disease related to alterations in circulating levels of short-chain fatty acids. The aim of the study was to examine the hypothesis that dietary manipulation may increase serum butyrate and thus have potential beneficial effects in renal disease. We examined the effect of dietary supplementation with a gum arabic sample of standardized molecular characteristics, Acacia(sen) SUPERGUM™ EM2 (SUPERGUM™), on systemic levels of butyrate in normal human subjects. In an in vitro study, we also examined the potential role of butyrate in modifying the generation of the profibrotic cytokine transforming growth factor-beta (TGF-1) by renal epithelial cells. Following 8 weeks of dietary supplementation with 25 g/day of SUPERGUM™, there was a two-fold increase in serum butyrate (n=7, P=0.03). In vitro work demonstrated that exposure of renal epithelial cells to elevated concentrations of butyrate suppressed both basal and stimulated TGF-1 synthesis. The action of butyrate was mediated by suppression of the extracellular signal-regulated kinase/mitogen-activated protein kinase signalling pathway. In addition, butyrate exposures reduced the response of renal epithelial cells to TGF-1 as assessed by luciferase activity of a TGF--responsive reporter construct. Attenuation of TGF-1 signalling was associated with reduced phosphorylation of Smad 3 and decreased trafficking of TGF-1 receptors into signalling, non-lipid raft-associated membrane fractions. In conclusion, the data demonstrate that dietary supplementation with SUPERGUM™ increased serum butyrate, which at least in vitro has beneficial effects on renal pro-fibrotic cytokine generation

    Predicted Effector Molecules in the Salivary Secretome of the Pea Aphid (Acyrthosiphon pisum): A Dual Transcriptomic/Proteomic Approach

    Get PDF
    The relationship between aphids and their host plants is thought to be functionally analogous to plant-pathogen interactions. Although virulence effector proteins that mediate plant defenses are well-characterized for pathogens such as bacteria, oomycetes, and nematodes, equivalent molecules in aphids and other phloem-feeders are poorly understood. A dual transcriptomic-proteomic approach was adopted to generate a catalog of candidate effector proteins from the salivary glands of the pea aphid, Acyrthosiphon pisum. Of the 1557 transcript supported and 925 mass spectrometry identified proteins, over 300 proteins were identified with secretion signals, including proteins that had previously been identified directly from the secreted saliva. Almost half of the identified proteins have no homologue outside aphids and are of unknown function. Many of the genes encoding the putative effector proteins appear to be evolving at a faster rate than homologues in other insects, and there is strong evidence that genes with multiple copies in the genome are under positive selection. Many of the candidate aphid effector proteins were previously characterized in typical phytopathogenic organisms (e.g., nematodes and fungi) and our results highlight remarkable similarities in the saliva from plant-feeding nematodes and aphids that may indicate the evolution of common solutions to the plant-parasitic lifestyle

    Transactive response DNA-binding protein-43 proteinopathy in oligodendrocytes revealed using an induced pluripotent stem cell model

    Get PDF
    Acknowledgements The authors kindly acknowledge the technical expertise and assistance of Ms Nicola Miller and Ms Karen Gladstone. Graphical abstract was created using BioRender.com. Funding This research was supported by the Wellcome Trust (092742/Z/10/Z), MND Association (Miles/Oct14/878– 792), SC lab is supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd, funded by the MRC, Alzheimer’s Society and Alzheimer’s Research UK. SC also acknowledges funding from the ARRNC, Department of Biotechnology India, University of Edinburgh Institutional Strategic Support Fund. Royal Society of Edinburgh (M.R.L), WT NIA 100981/Z/ 13/Z (N.M.M.), ARRNC (B.T.S) and an Australian National Health and Medical Research (NH&MRC) and Australian Research Council (ARC) Dementia Research Development Fellowship (S.K.B.: 1110040)Peer reviewedPublisher PD

    Effects of rising amyloidβ levels on hippocampal synaptic transmission, microglial response and cognition in APPSwe/PSEN1M146V transgenic miceResearch in context

    No full text
    Background: Progression of Alzheimer's disease is thought initially to depend on rising amyloidβ and its synaptic interactions. Transgenic mice (TASTPM; APPSwe/PSEN1M146V) show altered synaptic transmission, compatible with increased physiological function of amyloidβ, before plaques are detected. Recently, the importance of microglia has become apparent in the human disease. Similarly, TASTPM show a close association of plaque load with upregulated microglial genes. Methods: CA1 synaptic transmission and plasticity were investigated using in vitro electrophysiology. Microglial relationship to plaques was examined with immunohistochemistry. Behaviour was assessed with a forced-alternation T-maze, open field, light/dark box and elevated plus maze. Findings: The most striking finding is the increase in microglial numbers in TASTPM, which, like synaptic changes, begins before plaques are detected. Further increases and a reactive phenotype occur later, concurrent with development of larger plaques. Long-term potentiation is initially enhanced at pre-plaque stages but decrements with the initial appearance of plaques. Finally, despite altered plasticity, TASTPM have little cognitive deficit, even with a heavy plaque load, although they show altered non-cognitive behaviours. Interpretation: The pre-plaque synaptic changes and microglial proliferation are presumably related to low, non-toxic amyloidβ levels in the general neuropil and not directly associated with plaques. However, as plaques grow, microglia proliferate further, clustering around plaques and becoming phagocytic. Like in humans, even when plaque load is heavy, without development of neurofibrillary tangles and neurodegeneration, these alterations do not result in cognitive deficits. Behaviours are seen that could be consistent with pre-diagnosis changes in the human condition. Funding: GlaxoSmithKline; BBSRC; UCL; ARUK; MRC. Keywords: Alzheimer's disease, Dementia, Mouse model, Synaptic transmission, Microglia, Plaque, Neurodegeneratio

    Core commitments for field trials of gene drive organisms

    Get PDF
    We must ensure that trials are scientifically, politically, and socially robust, publicly accountable, and widely transparent. Gene drive organisms (GDOs), whose genomes have been genetically engineered to spread a desired allele through a population, have the potential to transform the way societies address a wide range of daunting public health and environmental challenges. The development, testing, and release of GDOs, however, are complex and often controversial. A key challenge is to clarify the appropriate roles of developers and others actively engaged in work with GDOs in decision-making processes, and, in particular, how to establish partnerships with relevant authorities and other stakeholders. Several members of the gene drive community previously proposed safeguards for laboratory experiments with GDOs (1) that, in the absence of national or international guidelines, were considered essential for responsible laboratory work to proceed. Now, with GDO development advancing in laboratories (2–5), we envision similar safeguards for the potential next step: ecologically and/or genetically confined field trials to further assess the performance of GDOs. A GDO’s propensity to spread necessitates well-developed criteria for field trials to assess its potential impacts (6). We, as a multidisciplinary group of GDO developers, ecologists, conservation biologists, and experts in social science, ethics, and policy, outline commitments below that we deem critical for responsible conduct of a field trial and to ensure that these technologies, if they are introduced, serve the public interest. Includes Supplementary materials
    corecore