306 research outputs found

    Calendar of Events 2014 Overview

    Get PDF

    Calendar of Events 2014 Overview

    Get PDF

    The complete spectrum of the area from recoupling theory in loop quantum gravity

    Full text link
    We compute the complete spectrum of the area operator in the loop representation of quantum gravity, using recoupling theory. This result extends previous derivations, which did not include the ``degenerate'' sector, and agrees with the recently computed spectrum of the connection-representation area operator.Comment: typos corrected in eqn.(21). Latex with IOP and epsf styles, 1 figure (eps postscript file), 12 pages. To appear in Class. Quantum Gra

    Axion gauge symmetries and generalized Chern-Simons terms in N=1 supersymmetric theories

    Get PDF
    We compute the form of the Lagrangian of N=1 supersymmetric theories with gauged axion symmetries. It turns out that there appear generalized Chern-Simons terms that were not considered in previous superspace formulations of general N=1 theories. Such gaugings appear in supergravities arising from flux compactifications of superstrings, as well as from Scherk-Schwarz generalized dimensional reduction in M-theory. We also present the dual superspace formulation where axion chiral multiplets are dualized into linear multiplets.Comment: References added and few misprints correcte

    Shifts in the Properties of the Higgs Boson from Radion Mixing

    Get PDF
    We examine how mixing between the Standard Model Higgs boson, hh, and the radion present in the Randall-Sundrum model of localized gravity modifies the expected properties of the Higgs boson. In particular, we demonstrate that the total and partial decay widths of the Higgs, as well as the h→ggh\to gg branching fraction, can be substantially altered from their Standard Model expectations. The remaining branching fractions are modified less than \lsim 5% for most of the parameter space volume.Comment: 17 pages, 7 figs., LaTex; revised versio

    Ghost Condensation and a Consistent Infrared Modification of Gravity

    Full text link
    We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation--a background where a scalar field \phi has a constant velocity, = M^2. The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, \rho = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation \omega^2 \sim k^4 / M^2. If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r^2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M_{Pl}/M^2 and the time scale M_{Pl}^2/M^3. This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy.Comment: 42 pages, LaTeX 2

    Supersymmetry and the relationship between a class of singular potentials in arbitrary dimensions

    Get PDF
    The eigenvalues of the potentials V1(r)=A1r+A2r2+A3r3+A4r4V_{1}(r)=\frac{A_{1}}{r}+\frac{A_{2}}{r^{2}}+\frac{A_{3}}{r^{3}}+\frac{A_{4 }}{r^{4}} and V2(r)=B1r2+B2r2+B3r4+B4r6V_{2}(r)=B_{1}r^{2}+\frac{B_{2}}{r^{2}}+\frac{B_{3}}{r^{4}}+\frac{B_{4}}{r^ {6}}, and of the special cases of these potentials such as the Kratzer and Goldman-Krivchenkov potentials, are obtained in N-dimensional space. The explicit dependence of these potentials in higher-dimensional space is discussed, which have not been previously covered.Comment: 13 pages article in LaTEX (uses standard article.sty). Please check "http://www1.gantep.edu.tr/~ozer" for other studies of Nuclear Physics Group at University of Gaziante

    Supersymmetry Without Prejudice

    Full text link
    We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a conventional thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.Comment: 61 pages, 24 figs. Refs., figs, and text added, typos fixed; This version has reduced/bitmapped figs. For a version with better figs please go to http://www.slac.stanford.edu/~rizz
    • …
    corecore