472 research outputs found

    Broken Symmetry in Density-Functional Theory: Analysis and Cure

    Get PDF
    We present a detailed analysis of the broken-symmetry mean-field solutions using a four-electron rectangular quantum dot as a model system. Comparisons of the density-functional theory predictions with the exact ones show that the symmetry breaking results from the single-configuration wave function used in the mean-field approach. As a general cure we present a scheme that systematically incorporates several configurations into the density-functional theory and restores the symmetry. This cure is easily applicable to any density-functional approach.Comment: 4 pages, 4 figures, submitted to PR

    Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    Full text link
    The combination of density functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parameterization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ``extended Overhauser model''. The results of this work can be used to build self-interaction corrected short-range correlation energy functionals.Comment: revised version, to appear in Phys. Rev.

    Unrestricted Hartree-Fock theory of Wigner crystals

    Full text link
    We demonstrate that unrestricted Hartree-Fock theory applied to electrons in a uniform potential has stable Wigner crystal solutions for rs≥1.44r_s \geq 1.44 in two dimensions and rs≥4.5r_s \geq 4.5 in three dimensions. The correlation energies of the Wigner crystal phases are considerably smaller than those of the fluid phases at the same density.Comment: 4 pages, 5 figure

    Effects of Backflow Correlation in the Three-Dimensional Electron Gas: Quantum Monte Carlo Study

    Full text link
    The correlation energy of the homogeneous three-dimensional interacting electron gas is calculated using the variational and fixed-node diffusion Monte Carlo methods, with trial functions that include backflow and three-body correlations. In the high density regime the effects of backflow dominate over those due to three-body correlations, but the relative importance of the latter increases as the density decreases. Since the backflow correlations vary the nodes of the trial function, this leads to improved energies in the fixed-node diffusion Monte Carlo calculations. The effects are comparable to those found for the two-dimensional electron gas, leading to much improved variational energies and fixed-node diffusion energies equal to the release-node energies of Ceperley and Alder within statistical and systematic errors.Comment: 14 pages, 5 figures, submitted to Physical Review

    Experimental Implementation of Logical Bell State Encoding

    Get PDF
    Liquid phase NMR is a general purpose test-bed for developing methods of coherent control relevant to quantum information processing. Here we extend these studies to the coherent control of logical qubits and in particular to the unitary gates necessary to create entanglement between logical qubits. We report an experimental implementation of a conditional logical gate between two logical qubits that are each in decoherence free subspaces that protect the quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure

    Self-consistent solutions of canonical proper self-gravitating quantum systems

    Full text link
    Generic self-gravitating quantum solutions that are not critically dependent on the specifics of microscopic interactions are presented. The solutions incorporate curvature effects, are consistent with the universality of gravity, and have appropriate correspondence with Newtonian gravitation. The results are consistent with known experimental results that indicate the maintenance of the quantum coherence of gravitating systems, as expected through the equivalence principle.Comment: 13 pages, 7 figure

    Pair distribution function in a two-dimensional electron gas

    Get PDF
    We calculate the pair distribution function, g(r)g(r), in a two-dimensional electron gas and derive a simple analytical expression for its value at the origin as a function of rsr_s. Our approach is based on solving the Schr\"{o}dinger equation for the two-electron wave function in an appropriate effective potential, leading to results that are in good agreement with Quantum Monte Carlo data and with the most recent numerical calculations of g(0)g(0). [C. Bulutay and B. Tanatar, Phys. Rev. B {\bf 65}, 195116 (2002)] We also show that the spin-up spin-down correlation function at the origin, g↑↓(0)g_{\uparrow \downarrow}(0), is mainly independent of the degree of spin polarization of the electronic system.Comment: 5 figures, pair distribution dependence with distance is calculate

    Ground-state densities and pair correlation functions in parabolic quantum dots

    Full text link
    We present an extensive comparative study of ground-state densities and pair distribution functions for electrons confined in two-dimensional parabolic quantum dots over a broad range of coupling strength and electron number. We first use spin-density-functional theory to determine spin densities that are compared with Diffusion Monte Carlo (DMC) data. This accurate knowledge of one-body properties is then used to construct and test a local approximation for the electron-pair correlations. We find very satisfactory agreement between this local scheme and the available DMC data, and provide a detailed picture of two-body correlations in a coupling-strength regime preceding the formation of Wigner-like electron ordering.Comment: 18 pages, 12 figures, submitte

    The on-top pair-correlation density in the homogeneous electron liquid

    Full text link
    The ladder theory, in which the Bethe-Goldstone equation for the effective potential between two scattering particles plays a central role, is well known for its satisfactory description of the short-range correlations in the homogeneous electron liquid. By solving exactly the Bethe-Goldstone equation in the limit of large transfer momentum between two scattering particles, we obtain accurate results for the on-top pair-correlation density g(0)g(0), in both three dimensions and two dimensions. Furthermore, we prove, in general, the ladder theory satisfies the cusp condition for the pair-correlation density g(r)g(r) at zero distance r=0r=0.Comment: 8 pages, 4 figure

    Spin and Charge Luttinger-Liquid Parameters of the One-Dimensional Electron Gas

    Full text link
    Low-energy properties of the homogeneous electron gas in one dimension are completely described by the group velocities of its charge (plasmon) and spin collective excitations. Because of the long range of the electron-electron interaction, the plasmon velocity is dominated by an electrostatic contribution and can be estimated accurately. In this Letter we report on Quantum Monte Carlo simulations which demonstrate that the spin velocity is substantially decreased by interactions in semiconductor quantum wire realizations of the one-dimensional electron liquid.Comment: 13 pages, figures include
    • …
    corecore