8 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Rapid Single-Step Affinity Purification of HA-Tagged Plant Mitochondria

    No full text
    Photosynthesis in plant cells would not be possible without the supportive role of mitochondria. However, isolating mitochondria from plant cells for physiological and biochemical analyses is a lengthy and tedious process. Established isolation protocols require multiple centrifugation steps and substantial amounts of starting material. To overcome these limitations, we tagged mitochondria in Arabidopsis (Arabidopsis thaliana) with a triple hemagglutinin tag for rapid purification via a single affinity-purification step. This protocol yields a substantial quantity of highly pure mitochondria from 1 g of Arabidopsis seedlings. The purified mitochondria were suitable for enzyme activity analyses and yielded sufficient amounts of proteins for deep proteomic profiling. We applied this method for the proteomic analysis of the Arabidopsis bou-2 mutant deficient in the mitochondrial Glu transporter BOUT DE SOUFFLE (BOU) and identified 27 differentially expressed mitochondrial proteins compared with tagged Col-0 controls. Our work sets the stage for the development of advanced mitochondria isolation protocols for distinct cell types

    Dendritic cell subsets in lymph nodes are characterized by the specific draining area and influence the phenotype and fate of primed T cells

    No full text
    Dendritic cells (DC) are important in differential T-cell priming. Little is known about the local priming by DC in the microenvironment of different lymph nodes and about the fate of the imprinted T cells. Therefore, freshly isolated rat DC from mesenteric lymph nodes (mLN) and axillary lymph nodes (axLN) were phenotyped and cultured with blood T cells in the presence of the superantigen Mycoplasma arthritidis mitogen (MAM). The phenotype, proliferation and apoptosis of the primed T cells were analysed. Our data show that a common DC population exists in both mLN and axLN. In addition, region-specific DC with an organotypical marker expression imprinted by the drained area were found. Coculture of T cells with DC from mLN or axLN resulted in a distinct shift in the CD4 and CD8 expression of T cells and their phenotype. Furthermore, when these differentially primed mLN and axLN T cells were injected into recipients, mLN-primed T cells survived longer in other lymphoid organs. The results show that the region-specific DC have a unique phenotype and an impact on the ratio of CD4 : CD8 T cells during an immune response in vivo

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18
    corecore