21 research outputs found

    Correlated Electrical and Chemical Nanoscale Properties in Potassium-Passivated, Triple-Cation Perovskite Solar Cells

    Get PDF
    Perovskite semiconductors are an exciting class of materials due to their promising performance outputs in photovoltaic devices. To boost their efficiency further, researchers introduce additives during sample synthesis, such as KI. However, it is not well understood how KI changes the material and, often, leaves precipitants. To fully resolve the role of KI, multiple microscopy techniques are applied and the electrical and chemical behavior of a Reference (untreated) and a KI‐treated perovskite are compared. Upon correlation between electrical and chemical nanoimaging techniques, it is discovered that these local properties are linked to the macroscopic voltage enhancement of the KI‐treated perovskite. The heterogeneity revealed in both the local electrical and chemical responses indicates that the additive partially migrates to the surface, yet surprisingly does not deteriorate the performance locally, rather, the voltage response homogeneously increases. The research presented within provides a diagnostic methodology, which connects the nanoscale electrical and chemical properties of materials, relevant to other perovskites, including multication and Pb‐free alternatives

    Correlated Electrical and Chemical Nanoscale Properties in Potassium-Passivated, Triple-Cation Perovskite Solar Cells

    Get PDF
    Perovskite semiconductors are an exciting class of materials due to their promising performance outputs in optoelectronic devices. To boost their efficiency further, researchers introduce additives during sample synthesis, such as KI. However, it is not well understood how KI changes the material and, often, leaves precipitants. To fully resolve the role of KI, a multiple microscopy techniques is applied and the electrical and chemical behavior of a Reference (untreated) and a KI-treated perovskite are compared. Upon correlation between electrical and chemical nanoimaging techniques, it is discovered that these local properties are linked to the macroscopic voltage enhancement of the KI-treated perovskite. The heterogeneity revealed in both the local electrical and chemical responses indicates that the additive partially migrates to the surface, yet surprisingly; does not deteriorate the performance locally, rather, the voltage response homogeneously increases. The research presented within provides a diagnostic methodology, which connects the nanoscale electrical and chemical properties of materials, relevant to other perovskites, including multication and Pb-free alternatives.University of Maryland All-S.T.A.R. Fellowship Hulka Energy Research Fellowship National Science Foundation US Department of Energy The Royal Society Office of Naval Researc

    Observation of large Rashba spin–orbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordIndirect absorption extended below the direct transition edge and increase in carrier lifetime derived from Rashba spin-orbit coupling may advance the optoelectronic applications of metal halide perovskites. Spin-orbit coupling in halide perovskites is due to the presence of heavy elements in their structure. However, when these materials lack an inversion symmetry, for example by the application of strain, spin-orbit coupling becomes odd in the electron’s momentum giving rise to a splitting in the electronic energy bands. Here we report on the observation of a large Rashba splitting of 117 meV at room temperature through a facile compositional engineering approach in halide perovskite single crystals, as predicted by relativistic first-principles calculations. Partial substitution of organic cations by rubidium ions in single crystals induces significant indirect absorption and dual emission as a result of a large Rashba splitting. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in perovskite single crystal devices and thin films. They originate from the significant spin-momentum locking that leads to different precession frequencies of their respective spins about the applied magnetic field. A hybrid perovskite single crystal photodetector achieved record figures of merit, including detectivity of more than 1.3×1018 Jones which represents a three orders of magnitude improvement compared to the to date record. These findings show that facile compositional engineering of perovskite single crystals holds great promise for further advancing the optoelectronic properties of existing materials.European Regional Development Fund (ERDF)European Union Horizon 2020Ministero dell’Istruzione dell’Universitàe della Ricerca (MIUR)Università degli Studi di PerugiaCNPq, Brazi

    Laser Ablation with Vacuum Capture for MALDI Mass Spectrometry of Tissue

    No full text
    © 2015 American Society for Mass Spectrometry. We have developed a laser ablation sampling technique for matrix-assisted laser desorption ionization (MALDI) mass spectrometry and tandem mass spectrometry (MS/MS) analyses of in-situ digested tissue proteins. Infrared laser ablation was used to remove biomolecules from tissue sections for collection by vacuum capture and analysis by MALDI. Ablation and transfer of compounds from tissue removes biomolecules from the tissue and allows further analysis of the collected material to facilitate their identification. Laser ablated material was captured in a vacuum aspirated pipette-tip packed with C18 stationary phase and the captured material was dissolved, eluted, and analyzed by MALDI. Rat brain and lung tissue sections 10 μm thick were processed by in-situ trypsin digestion after lipid and salt removal. The tryptic peptides were ablated with a focused mid-infrared laser, vacuum captured, and eluted with an acetonitrile/water mixture. Eluted components were deposited on a MALDI target and mixed with matrix for mass spectrometry analysis. Initial experiments were conducted with peptide and protein standards for evaluation of transfer efficiency: a transfer efficiency of 16% was obtained using seven different standards. Laser ablation vacuum capture was applied to freshly digested tissue sections and compared with sections processed with conventional MALDI imaging. A greater signal intensity and lower background was observed in comparison with the conventional MALDI analysis. Tandem time-of-flight MALDI mass spectrometry was used for compound identification in the tissue

    Tip-Enhanced Laser Ablation Sample Transfer for Biomolecule Mass Spectrometry

    No full text
    Atomic force microscope (AFM) tip enhanced laser ablation was used to transfer molecules from thin films to a suspended silver wire for off-line mass spectrometry using laser desorption ionization (LDI) and matrix-assisted laser desorption ionization (MALDI). An AFM with a 30 nm radius gold-coated silicon tip was used to image the sample and to hold the tip 15 nm from the surface for material removal using a 355 nm Nd:YAG laser. The ablated material was captured on a silver wire that was held 300 μ m vertically and 100 μm horizontally from the tip. For the small molecules anthracene and rhodamine 6G, the wire was cut and affixed to a metal target using double-sided conductive tape and analyzed by LDI using a commercial laser desorption time-of-flight mass spectrometer. Approximately 100 fg of material was ablated from each of the 1 μ m ablation spots and transferred with approximately 3% efficiency. For larger polypeptide molecules angiotensin II and bovine insulin, the captured material was dissolved in saturated matrix solution and deposited on a target for MALDI analysis
    corecore