34 research outputs found

    Highly mobile carriers in orthorhombic phases of iron-based superconductors FeSe1x{}_{1-x}Sx{}_{x}

    Full text link
    The field and temperature dependencies of the longitudinal and Hall resistivity have been measured for FeSe1x{}_{1-x}Sx{}_{x} (x=0.04, 0.09 and 0.19) single crystals. The sample FeSe0.81{}_{0.81}S0.19{}_{0.19} does not show a transition to an orthorhombic phase and exhibits at low temperatures the transport properties quite different from those of orthorhombic samples. The behavior of FeSe0.81{}_{0.81}S0.19{}_{0.19} is well described by the simple two band model with comparable values of hole and electron mobility. In particular, at low temperatures the transverse resistance shows a linear field dependence, the magnetoresistance follow a quadratic field dependence and obeys to Kohler's rule. In contrast, Kohler's rule is strongly violated for samples having an orthorhombic low temperature structure. However, the transport properties of the orthorhombic samples can be satisfactory described by the three band model with the pair of almost equivalent to the tetragonal sample hole and electron bands, supplemented with the highly mobile electron band which has two order smaller carrier number. Therefore, the peculiarity of the low temperature transport properties of the orthorhombic Fe(SeS) samples, as probably of many other orthorhombic iron superconductors, is due to the presence of a small number of highly mobile carriers which originate from the local regions of the Fermi surface, presumably, nearby the Van Hove singularity points

    Magnetotransport properties of FeSe in fields up to 50T

    Full text link
    Magnetotransport properties of the high-quality FeSe crystal, measured in a wide temperature range and in magnetic fields up to 50 T, show the symmetry of the main holelike and electronlike bands in this compound. In addition to the main two bands, there is also a tiny, highly mobile, electronlike band which is responsible for the non-linear behavior of ρxy\rho_{xy}(B) at low temperatures and some other peculiarities of FeSe. We observe the inversion of the ρxx\rho_{xx} temperature coeficient at a magnetic field higher than about 20 T which is an implicit conformation of the electron-hole symmetry in the main bands.Comment: MISM 201

    Majority carrier type inversion in FeSe family and "doped semimetal" scheme in iron-based superconductors

    Full text link
    The field and temperature dependencies of the longitudinal and Hall resistivity have been studied for high-quality FeSe1x{}_{1-x}Sx{}_{x} (x up to 0.14) single crystals. Quasiclassical analysis of the obtained data indicates a strong variation of the electron and hole concentrations under the studied isovalent substitution and proximity of FeSe to the point of the majority carrier-type inversion. On this basis, we propose a `doped semimetal' scheme for the superconducting phase diagram of the FeSe family, which can be applied to other iron-based superconductors. In this scheme, the two local maxima of the superconducting temperature can be associated with the Van Hove singularities of a simplified semi-metallic electronic structure. The multicarrier analysis of the experimental data also reveals the presence of a tiny and highly mobile electron band for all the samples studied. Sulfur substitution in the studied range leads to a decrease in the number of mobile electrons by more than ten times, from about 3\% to about 0.2\%. This behavior may indicate a successive change of the Fermi level position relative to singular points of the electronic structure which is consistent with the `doped semimetal' scheme. The scattering time for mobile carriers does not depend on impurities, which allows us to consider this group as a possible source of unusual acoustic properties of FeSe

    Multiband effect in elastoresistance of Fe(Se,Te)

    Full text link
    We have investigated the elastoresistance of two FeSe1x{}_{1-x}Tex{}_{x} (x about 0.4 - 0.5) compounds that have a close chemical composition but differ significantly in electronic properties. The first compound has a negative temperature coefficient of resistance and does not show any phase transitions other than superconducting. The elastoresistance of this compound approximately follows 1/T1/T low as it usually occurs in Fe(Se,S) with metallic conductivity. The second compound has a metallic type of conductivity and in addition to the superconducting transition, there is also a phase transition at a temperature of about 30 K. The elastoresistance of the second compound is sign-reversing and can be approximated with the sum of two Curie-Weiss type terms with opposite signs and different critical temperatures which suggest a competition of contributions to the elastoresistance from different band valleys

    1/3 magnetization plateau and frustrated ferrimagnetism in a sodium iron phosphite

    Get PDF
    AT was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. This work was supported in part by Russian Foundation for Basic Research grants 14-02-00111, 14-02-00245, 16-02-00021, from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (№ К2-2015-075 and № K4-2015-020) and by Act 211 of the Government of Russian Federation, agreement № 02.A03.21.0006. EAZ, JW and RK acknowledge support by the Excellence Initiative of the German Federal Government and States. PL thanks EPSRC (EP/K503162/1) for partial support of a studentship to IM and the Leverhulme Trust for the award of a post-doctoral fellowship (RPG-2013-343) to LC. SK is grateful for the funding by SSP1458 of the DFG.The sodium-iron phosphite NaFe3(HPO3)2(H2PO3)6 is studied by ac-magnetic susceptibility, pulsed-field magnetization, specific heat, and high-frequency electron spin resonance (HF-ESR) measurements combined with Mössbauer spectroscopy and density-functional calculations. We show that this compound develops ferrimagnetic order below TC = 9.5 K and reveals a magnetization plateau at 1/3-saturation. The plateau extends to Bc ~ 8 T, whereas above Bc the magnetization increases linearly until reaching saturation at Bs ~ 27 T. The Mössbauer spectroscopy reveals two magnetically non-equivalent iron sites with the 2:1 ratio. The HF-ESR spectra are consistent with a two-sublattice ferrimagnet and additionally pinpoint weak magnetic anisotropy as well as short-range spin order that persists well above TC. The ferrimagnetic order in the title compound is stabilized by a network of purely antiferromagnetic exchange interactions. The spin lattice comprises layers coinciding with the crystallographic (10-1) planes, with stronger couplings Ji ~ 1.5 K within the layers and weaker couplings Ji = 0.3−0.4 K between the layers. Both intralayer and interlayer couplings are frustrated. The ensuing ferrimagnetic order arises from a subtle interplay of the frustrated but nonequivalent exchange couplings.PostprintPostprintPeer reviewe

    Multiband Effect in Elastoresistance of Fe(Se,Te)

    Full text link
    We have investigated the elastoresistance of two compounds that have a close chemical composition but differ significantly in electronic properties. The first compound has a negative temperature coefficient of resistance and does not show any phase transitions other than a superconducting one. The elastoresistance of this compound approximately follows the law which is a special case of the Curie-Weiss law, which is usually observed for Fe(Se,S) with metallic conductivity. The second compound has a metallic type of conductivity and, in addition to the superconducting transition, there is also a phase transition at a temperature of about 30 K. The elastoresistance of the second compound is sign-reversing and can be approximated with the sum of two Curie-Weiss-type terms with opposite signs and different critical temperatures. We attribute this behavior to the competition of contributions to the elastoresistance from different band valleys. These competing contributions may appear since the composition of our compound is close to the critical point at which the low-temperature ground state in the 11 series of iron-based superconductors changes from electronic nematic order to magnetic order. © Copyright2020 EPLA.This work was supported in part from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (K2-2020-008) and by Act 211 of the Government of Russian Federation, agreements 02.A03.21.0004 and 02.A03.21.0006 and by the Program of Competitive Growth of Kazan Federal University. We acknowledge support from Russian Foundation for Basic Research (Grants 20-02-00561 and ofi-m 17-29-10007) and Russian Science Foundation (Grant 19-42-02010)

    Phase Separation Near the Charge Neutrality Point in FeSe1-xTexcrystals with x < 0.15

    Full text link
    Our study of FeSe1-xTe x crystals with x < 0.15 shows that the phase separation in these compositions occurs into phases with a different stoichiometry of iron. This phase separation may indicate structural instability of the iron plane in the studied range of compositions. We tentatively propose an explanation of the structural instability of the iron plane in the studied layered compounds in terms of the possible change in the bond polarity and the peculiarity of the direct d-d exchange in the iron plane in the framework of the basic phenomenological description such as the Bethe-Slater curve. With this approach, when the distance between iron atoms is close to the value at which the sign of the magnetic exchange for some d orbitals changes, structural and electronic instability can occur. Anomalies in the crystal field near the point of charge neutrality can also be a significant component of this instability. © 2021 IOP Publishing Ltd
    corecore