386 research outputs found

    Invariant metrics and Hamiltonian Systems

    Full text link
    Via a non degenerate symmetric bilinear form we identify the coadjoint representation with a new representation and so we induce on the orbits a simplectic form. By considering Hamiltonian systems on the orbits we study some features of them and finally find commuting functions under the corresponding Lie-Poisson bracketComment: 16 pages corrected typos, changed contents (Prop. 3.4 and Theorem in Section 3

    Lorentzian compact manifolds: isometries and geodesics

    Full text link
    In this work we investigate families of compact Lorentzian manifolds in dimension four. We show that every lightlike geodesic on such spaces is periodic, while there are closed and non-closed spacelike and timelike geodesics. Their isometry groups are computed. We also show that there is a non trivial action by isometries of \Heis_3(\RR) on the nilmanifold S^1\times (\Gamma_k \bsh \Heis_3(\RR)) for Γk\Gamma_k a lattice of \Heis_3(\RR).Comment: 17 page

    Time-series Modelling, Stationarity and Bayesian Nonparametric Methods

    Get PDF
    In this paper we introduce two general non-parametric first-order stationary time-series models for which marginal (invariant) and transition distributions are expressed as infinite-dimensional mixtures. That feature makes them the first Bayesian stationary fully non-parametric models developed so far. We draw on the discussion of using stationary models in practice, as a motivation, and advocate the view that flexible (non-parametric) stationary models might be a source for reliable inferences and predictions. It will be noticed that our models adequately fit in the Bayesian inference framework due to a suitable representation theorem. A stationary scale-mixture model is developed as a particular case along with a computational strategy for posterior inference and predictions. The usefulness of that model is illustrated with the analysis of Euro/USD exchange rate log-returns.Stationarity, Markov processes, Dynamic mixture models, Random probability measures, Conditional random probability measures, Latent processes.

    Automatic Metro Map Layout Using Multicriteria Optimization

    Get PDF
    This paper describes an automatic mechanism for drawing metro maps. We apply multicriteria optimization to find effective placement of stations with a good line layout and to label the map unambiguously. A number of metrics are defined, which are used in a weighted sum to find a fitness value for a layout of the map. A hill climbing optimizer is used to reduce the fitness value, and find improved map layouts. To avoid local minima, we apply clustering techniques to the map the hill climber moves both stations and clusters when finding improved layouts. We show the method applied to a number of metro maps, and describe an empirical study that provides some quantitative evidence that automatically-drawn metro maps can help users to find routes more efficiently than either published maps or undistorted maps. Moreover, we found that, in these cases, study subjects indicate a preference for automatically-drawn maps over the alternatives

    Extending invariant complex structures

    Get PDF
    We study the problem of extending a complex structure to a given Lie algebra g, which is firstly defined on an ideal h of g. We consider the next situations: h is either complex or it is totally real. The next question is to equip g with an additional structure, such as a (non)-definite metric or a symplectic structure and to ask either h is non-degenerate, isotropic, etc. with respect to this structure, by imposing a compatibility assumption. We show that this implies certain constraints on the algebraic structure of g. Constructive examples illustrating this situation are shown, in particular computations in dimension six are given.Comment: 22 pages, plus an Addendu

    The role of magnetoplasmons in Casimir force calculations

    Full text link
    In this paper we review the role of magneto plasmon polaritons in the Casimir force calculations. By applying an external constant magnetic field a strong optical anisotropy is induced on two parallel slabs reducing the reflectivity and thus the Casimir force. As the external magnetic field increases, the Casimir force decreases. Thus, with an an external magnetic field the Casimir force can be controlled.The calculations are done in the Voigt configuration where the magnetic field is parallel to the slabs. In this configuration the reflection coefficients for TE and TM modes do not show mode conversion.Comment: contribution to QFEXT09, Norman, Oklahoma 200
    • …
    corecore