45 research outputs found

    Hypothesis testing on the planktic foraminiferal survival model after the KPB mass extinction: evidence from Tunisia and Algeria

    Get PDF
    A historical review of the extinction, survival, and evolutionary models of planktic foraminifera proposed for the Cretaceous/Paleogene boundary (KPB) mass extinction event sometimes leaves the impression that there is still no conclusive evidence to support any single one of them. Two main models have been put forward: i) catastrophic mass extinction, almost total for some authors, compatible with the geologically instantaneous paleoenvironmental effects of a large meteorite impact (Chicxulub impact, Mexico); and ii) gradual mass extinction, compatible with the paleoenvironmental effects of massive, long-lasting volcanism (Deccan Traps, India). Over the years, a lot of evidence has been proposed supporting one hypothesis or the other, highlighting isotopic (delta O-18, delta C-13, Sr-87/Sr-86) as well as taphonomic, biostratigraphic, quantitative (relative and/or absolute abundance), phylogenetic, and even teratological. We review previous planktic foraminiferal and stable isotope studies, and provide new quantitative and statistical tests from two pelagic sections: the El Kef section (Tunisia), recognized as the most continuous and expanded lowermost Danian section worldwide, and the Sidi Ziane section (Algeria), affected by relevant hiatus in the lower Danian. The results indicate that all the latest Maastrichtian planktic foraminiferal species except those of Guembelitria went extinct exactly at the KPB, supporting the hypothesis of an almost total extinction. In the light of this new evidence, we maintain that the Maastrichtian planktic foraminiferal specimens found worldwide in lower Danian samples could be the result of similar reworking and vertical mixing processes to those at El Kef and Sidi Ziane

    Comparative study of inhibitory efficacy of methionine and its derivatives in acidic medium by mild steel

    Get PDF
    Corrosion inhibition effect of L-Methionine (MT1), L-Methionine sulfoxide (MT2) and L-Methionine sulfone (MT3) on mild steel corrosion in 1M HCl solution was studied by using weight loss, electrochemical polarization and electrochemical impedance spectroscopy (EIS) techniques. The experimental results showed that the inhibitory efficiency of the three aminoacids improves with the increase of concentration to reach the maximum value of 95.20% for MT1, 94.14% for MT2 and 88.92% for MT3 for a concentration of 10-3M, which translates that the surface covered by the inhibitor increases with the concentration. The effect of temperature on the corrosion rate was investigated and some thermodynamic parameters were calculated. Polarization studies show that three studied inhibitors suggested that three inhibitors control the anodic as well as cathodic reactions and act as mixed type in nature. The results show that MT1, MT2 and MT3 are good inhibitors, and the adsorption of each inhibitor on mild steel surface obeys Flory-Huggins and Langmuir, with a better fit of the Langmuir isotherm through mixed adsorption (physisorption as well as chemisorption) process. In addition, the quantum approach based on density functional theory (DFT), monte Carlo (MC) and molecular dynamics (MD) simulations was confirmed the reactivity of the studied compound towards the corrosion process

    Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The model bacterium <it>Clostridium cellulolyticum </it>efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H<sub>2 </sub>and CO<sub>2</sub>, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for <it>C. cellulolyticum</it>, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering.</p> <p>Results</p> <p>The first targeted gene inactivation system was developed for <it>C. cellulolyticum</it>, based on a mobile group II intron originating from the <it>Lactococcus lactis </it>L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous <smcaps>L</smcaps>-lactate dehydrogenase (<it>Ccel_2485; ldh</it>) and <smcaps>L</smcaps>-malate dehydrogenase (<it>Ccel_0137; mdh</it>) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway.</p> <p>Conclusions</p> <p>The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in <it>C. cellulolyticum</it>. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in <it>C</it>. <it>cellulolyticum </it>and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass.</p

    Investigation of Losses in Fingers and Clamping Plates of High-Power Electrical Machines

    No full text
    International audienceWhen designing an electrical machine, the lossesin end-regions are often neglected or approximated withempirical equations due to the complexity of the involvedphysical phenomena and the difficulty to measure them. As aconsequence, important differences can appear between the totalmeasured losses and the value predicted by the analytic tools.This error can result in a high economic loss for machinemanufacturers. This paper presents a 3D FEM eddy current losscalculation in fingers and clamping plates of an experimentalbench set up. The study focuses on the effect of the axialcomponent of the flux density at the end region on these losses inthe case of different materials and power supply frequencies.Simulations results are presented and analyze
    corecore