45 research outputs found
Plasma phenoloxidase of the larval tobacco budworm, Heliothis virescens, is virucidal
Heliothis virescens larval plasma contains high levels of an antiviral activity against the budded form of the Helicoverpa zea single nucleopolyhedrovirus (HzSNPV) in vitro. Preliminary results indicated that phenoloxidase is primarily responsible for this virucidal effect. However it is known that other enzymes that generate antimicrobial reactive oxygen intermediates and reactive nitrogen intermediates are present in hemolymph that could contribute to the observed virucidal activity. To elucidate the contributions of phenoloxidase and other candidate activities to plasma innate immune response against baculovirus infection specific metabolic inhibitors were used. In vitro the general inhibitors of melanization (N-acetyl cysteine, ascorbate and glutathione), and specific inhibitors of phenoloxidase (phenylthiourea and Kojic acid), completely blocked virucidal activity up to the level seen in controls. Addition of the enzyme superoxide dismutase to plasma did not affect virucidal activity; however addition of catalase had an inhibitory effect. Inhibitors of nitric oxide synthase activity did not affect virucidal activity. Our results confirm that phenoloxidase is the predominate activity in larval plasma accounting for inactivation of Hz SNPV in vitro, and that phenoloxidase-dependent H2O2 production may contribute to this virucidal activity
Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus
Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses