4 research outputs found

    Annealing study and thermal investigation on bismuth sulfide thin films prepared by chemical bath deposition in basic medium

    Full text link
    This is a post-peer-review, pre-copyedit version of an article published in Applied Physics A 124.2 (2018): 166. The final authenticated version is available online at: http://doi.org/10.1007/s00339-018-1584-7Bismuth sulfide thin films were prepared by chemical bath deposition using thiourea as sulfide ion source in basic medium. First, the effects of both the deposition parameters on films growth as well as the annealing effect under argon and sulfur atmosphere on as-deposited thin films were studied. The parameters were found to be influential using the Doehlert matrix experimental design methodology. Ranges for a maximum surface mass of films (3 mg cm-2) were determined. A well crystallized major phase of bismuth sulfide with stoichiometric composition was achieved at 190掳C for 3 hours. The prepared thin films were characterized using Grazing Incidence X-ray diffraction (GIXRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). Second, the band gap energy value was found to be 1.5 eV. Finally, the thermal properties have been studied for the first time by means of the electropyroelectric (EPE) technique. Indeed, the thermal conductivity varied in the range of 1.20 - 0.60 W m-1 K-1 while the thermal diffusivity values increased in terms of the annealing effect ranging from 1.8 to 3.5 10-7 m2s-1This work was financially supported by the Tunisian Ministry of Higher Education and Scientific Research and by the WINCOST (ENE2016-80788-C5-2-R) project funded by the Spanish Ministry of Economy and Competitivenes

    Optimal Extractive Separation of Chromium(VI) from Acidic Chloride and Nitrate Media by Commercial Amines: Equilibrium Modeling Through Linear Solvation Energy Relation

    No full text
    Data for the extraction of chromium, Cr(VI), from aqueous acidic chloride and nitrate solutions by Alamine 300 (tertiary amine)/xylene and di-n-octyl amine (DOA)/xylene solvent systems (298 K) have been subjected to formulation of an optimization structure for an effective Cr(VI) separation. The optimization approach uses a derivative variation method to efficiently identify the optimization range through analyzing the first-order derivatives of the optimized quantity and the nonlinear deviation profile of the derivative value. The main characteristics of it are simplicity and suitability for generalization. Optimum Cr(VI) removal efficiencies, defined both experimentally and analytically, range from about 70 to 90% for Alamine 300 and from 50 to 70% for DOA, being dependent about equally strongly on the types and concentration levels of the amine, acid, and the transferred Cr(VI) species. These dependencies are rationalized in terms of the interactions that take place in the equilibrium phases. Three independent variables, i.e. the concentrations of the amine, acid, and Cr(VI), are adequate for expressing the nonlinear dependence of the optimized extraction factor (E, Z(t)) on the properties of relevant system. Modeling efforts based on the LSER (linear solvation energy relation) principles and the mass-action law methodology have shown considerable success. The proposed LSER-based solvation model using nine physical descriptors of the solvent and ion provides relatively reliable fits with a mean error of 9%, and satisfies established limiting behavior of the physical event. A critical comparison of the present method with the other commonly used reactive extraction methods on an efficiency basis has been carried out
    corecore