22 research outputs found

    Cumulative live birth rates in low-prognosis women

    Get PDF
    STUDY QUESTION: Do cumulative live birth rates (CLBRs) over multiple IVF/ICSI cycles confirm the low prognosis in women stratified according to the POSEIDON criteria? SUMMARY ANSWER: The CLBR of low-prognosis women is ~56% over 18 months of IVF/ICSI treatment and varies between the POSEIDON groups, which is primarily attributable to the impact of female age. WHAT IS KNOWN ALREADY: The POSEIDON group recently proposed a new stratification for low-prognosis women in IVF/ICSI treatment, with the aim to define more homogenous populations for clinical trials and stimulate a patient-tailored therapeutic approach. These new criteria combine qualitative and quantitative parameters to create four groups of low-prognosis women with supposedly similar biologic characteristics. STUDY DESIGN, SIZE, DURATION: This study analyzed the data of a Dutch multicenter observational cohort study including 551 low-prognosis women, aged <44 years, who initiated IVF/ICSI treatment between 2011 and 2014 and were treated with a fixed FSH dose of 150 IU/day in the first treatment cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS: Low-prognosis women were categorized into one of the POSEIDON groups based on their age (younger or older than 35 years), anti-Müllerian hormone (AMH) level (above or below 0.96 ng/ml), and the ovarian response (poor or suboptimal) in their first cycle of standard stimulation. The primary outcome was the CLBR over multiple complete IVF/ICSI cycles, including all subsequent fresh and frozen-thawed embryo transfers, within 18 months of treatment. Cumulative incidence curves were obtained using an optimistic and a conservative analytic approach. MAIN RESULTS AND THE ROLE OF CHANCE: The CLBR of the low-prognosis women was on average ~56% over 18 months of IVF/ICSI treatment. Younger unexpected poor (n = 38) and suboptimal (n = 179) responders had a CLBR of ~65% and ~68%, respectively, and younger expected poor responders (n = 65) had a CLBR of ~59%. The CLBR of older unexpected poor (n = 41) and suboptimal responders (n = 102) was ~42% and ~54%, respectively, and of older expected poor responders (n = 126) ~39%. For comparison, the CLBR of younger (n = 164) and older (n = 78) normal responders with an adequate ovarian reserve was ~72% and ~58% over 18 months of treatment, respectively. No large differences were observed in the number of fresh treatment cycles between the POSEIDON groups, with an average of two fresh cycles per woman within 18 months of follow-up. LIMITATIONS, REASONS FOR CAUTION: Small numbers in some (sub)groups reduced the precision of the estimates. However, our findings provide the first relevant indication of the CLBR of low-prognosis women in the POSEIDON groups. Small FSH dose adjustments between cycles were allowed, inducing therapeutic disparity. Yet, this is in accordance with current daily practice and increases the generalizability of our findings. WIDER IMPLICATIONS OF THE FINDINGS: The CLBRs vary between the POSEIDON groups. This heterogeneity is primarily determined by a woman's age, reflecting the importance of oocyte quality. In younger women, current IVF/ICSI treatment reaches relatively high CLBR over multiple complete cycles, despite reduced quantitative parameters. In older women, the CLBR remains relatively low over multiple complete cycles, due to the co-occurring decline in quantitative and qualitative parameters. As no effective interventions exist to counteract this decline, clinical management currently relies on proper counselling. STUDY FUNDING/COMPETING INTEREST(S): No external funds were obtained for this study. J.A.L. is supported by a Research Fellowship grant and received an unrestricted personal grant from Merck BV. S.C.O., T.C.v.T., and H.L.T. received an unrestricted personal grant from Merck BV. C.B.L. received research grants from Merck, Ferring, and Guerbet. K.F. received unrestricted research grants from Merck Serono, Ferring, and GoodLife. She also received fees for lectures and consultancy from Ferring and GoodLife. A.H. declares that the Department of Obstetrics and Gynaecology, University Medical Centre Groningen received an unrestricted research grant from Ferring Pharmaceuticals BV, the Netherlands. J.S.E.L. has received unrestricted research grants from Ferring, Zon-MW, and The Dutch Heart Association. He also received travel grants and consultancy fees from Danone, Euroscreen, Ferring, AnshLabs, and Titus Healthcare. B.W.J.M. is supported by an National Health and Medical Research Council Practitioner Fellowship (GNT1082548) and reports consultancy work for ObsEva, Merck, and Guerbet. He also received a research grant from Merck BV and travel support from Guerbet. F.J.M.B. received monetary compensation as a member of the external advisory board for Merck Serono (the Netherlands) and Ferring Pharmaceuticals BV (the Netherlands) for advisory work for Gedeon Richter (Belgium) and Roche Diagnostics on automated AMH assay development, and for a research cooperation with Ansh Labs (USA). All other authors have nothing to declare. TRIAL REGISTRATION NUMBER: Not applicable

    Cumulative live birth rates in low-prognosis women

    Get PDF
    STUDY QUESTION: Do cumulative live birth rates (CLBRs) over multiple IVF/ICSI cycles confirm the low prognosis in women stratified according to the POSEIDON criteria? SUMMARY ANSWER: The CLBR of low-prognosis women is ~56% over 18 months of IVF/ICSI treatment and varies between the POSEIDON groups, which is primarily attributable to the impact of female age. WHAT IS KNOWN ALREADY: The POSEIDON group recently proposed a new stratification for low-prognosis women in IVF/ICSI treatment, with the aim to define more homogenous populations for clinical trials and stimulate a patient-tailored therapeutic approach. These new criteria combine qualitative and quantitative parameters to create four groups of low-prognosis women with supposedly similar biologic characteristics. STUDY DESIGN, SIZE, DURATION: This study analyzed the data of a Dutch multicenter observational cohort study including 551 low-prognosis women, aged <44 years, who initiated IVF/ICSI treatment between 2011 and 2014 and were treated with a fixed FSH dose of 150 IU/day in the first treatment cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS: Low-prognosis women were categorized into one of the POSEIDON groups based on their age (younger or older than 35 years), anti-Müllerian hormone (AMH) level (above or below 0.96 ng/ml), and the ovarian response (poor or suboptimal) in their first cycle of standard stimulation. The primary outcome was the CLBR over multiple complete IVF/ICSI cycles, including all subsequent fresh and frozen-thawed embryo transfers, within 18 months of treatment. Cumulative incidence curves were obtained using an optimistic and a conservative analytic approach. MAIN RESULTS AND THE ROLE OF CHANCE: The CLBR of the low-prognosis women was on average ~56% over 18 months of IVF/ICSI treatment. Younger unexpected poor (n = 38) and suboptimal (n = 179) responders had a CLBR of ~65% and ~68%, respectively, and younger expected poor responders (n = 65) had a CLBR of ~59%. The CLBR of older unexpected poor (n = 41) and suboptimal responders (n = 102) was ~42% and ~54%, respectively, and of older expected poor responders (n = 126) ~39%. For comparison, the CLBR of younger (n = 164) and older (n = 78) normal responders with an adequate ovarian reserve was ~72% and ~58% over 18 months of treatment, respectively. No large differences were observed in the number of fresh treatment cycles between the POSEIDON groups, with an average of two fresh cycles per woman within 18 months of follow-up. LIMITATIONS, REASONS FOR CAUTION: Small numbers in some (sub)groups reduced the precision of the estimates. However, our findings provide the first relevant indication of the CLBR of low-prognosis women in the POSEIDON groups. Small FSH dose adjustments between cycles were allowed, inducing therapeutic disparity. Yet, this is in accordance with current daily practice and increases the generalizability of our findings. WIDER IMPLICATIONS OF THE FINDINGS: The CLBRs vary between the POSEIDON groups. This heterogeneity is primarily determined by a woman's age, reflecting the importance of oocyte quality. In younger women, current IVF/ICSI treatment reaches relatively high CLBR over multiple complete cycles, despite reduced quantitative parameters. In older women, the CLBR remains relatively low over multiple complete cycles, due to the co-occurring decline in quantitative and qualitative parameters. As no effective interventions exist to counteract this decline, clinical management currently relies on proper counselling. STUDY FUNDING/COMPETING INTEREST(S): No external funds were obtained for this study. J.A.L. is supported by a Research Fellowship grant and received an unrestricted personal grant from Merck BV. S.C.O., T.C.v.T., and H.L.T. received an unrestricted personal grant from Merck BV. C.B.L. received research grants from Merck, Ferring,

    Individualized versus standard FSH dosing in women starting IVF/ICSI:An RCT. Part 2: The predicted hyper responder

    Get PDF
    STUDY QUESTION: Does a reduced FSH dose in women with a predicted hyper response, apparent from a high antral follicle count (AFC), who are scheduled for IVF/ICSI lead to a different outcome with respect to cumulative live birth rate and safety? SUMMARY ANSWER: Although in women with a predicted hyper response (AFC > 15) undergoing IVF/ICSI a reduced FSH dose (100 IU per day) results in similar cumulative live birth rates and a lower occurrence of any grade of ovarian hyperstimulation syndrome (OHSS) as compared to a standard dose (150 IU/day), a higher first cycle cancellation rate and similar severe OHSS rate were observed. WHAT IS KNOWN ALREADY: Excessive ovarian response to controlled ovarian stimulation (COS) for IVF/ICSI may result in increased rates of cycle cancellation, the occurrence of OHSS and suboptimal live birth rates. In women scheduled for IVF/ICSI, an ovarian reserve test (ORT) can be used to predict response to COS. No consensus has been reached on whether ORT-based FSH dosing improves effectiveness and safety in women with a predicted hyper response. STUDY DESIGN SIZE, DURATION: Between May 2011 and May 2014, we performed an open-label, multicentre RCT in women with regular menstrual cycles and an AFC > 15. Women with polycystic ovary syndrome (Rotterdam criteria) were excluded. The primary outcome was ongoing pregnancy achieved within 18 months after randomization and resulting in a live birth. Secondary outcomes included the occurrence of OHSS and cost-effectiveness. Since this RCT was embedded in a cohort study assessing over 1500 women, we expected to randomize 300 predicted hyper responders. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with an AFC > 15 were randomized to an FSH dose of 100 IU or 150 IU/day. In both groups, dose adjustment was allowed in subsequent cycles (maximum 25 IU in the reduced and 50 IU in the standard group) based on pre-specified criteria. Both effectiveness and cost-effectiveness were evaluated from an intention-to-treat perspective. MAIN RESULTS AND THE ROLE OF CHANCE: We randomized 255 women to a daily FSH dose of 100 IU and 266 women to a daily FSH dose of 150 IU. The cumulative live birth rate was 66.3% (169/255) in the reduced versus 69.5% (185/266) in the standard group (relative risk (RR) 0.95 [95%CI, 0.85-1.07], P = 0.423). The occurrence of any grade of OHSS was lower after a lower FSH dose (5.2% versus 11.8%, RR 0.44 [95%CI, 0.28-0.71], P = 0.001), but the occurrence of severe OHSS did not differ (1.3% versus 1.1%, RR 1.25 [95%CI, 0.38-4.07], P = 0.728). As dose reduction was not less expensive (€4.622 versus €4.714, delta costs/woman €92 [95%CI, -479-325]), there was no dominant strategy in the economic analysis. LIMITATIONS, REASONS FOR CAUTION: Despite our training programme, the AFC might have suffered from inter-observer variation. Although strict cancellation criteria were provided, selective cancelling in the reduced dose group (for poor response in particular) cannot be excluded as observers were not blinded for the FSH dose and small dose adjustments were allowed in subsequent cycles. However, as first cycle live birth rates did not differ from the cumulative results, the open design probably did not mask a potential benefit for the reduced dosing group. As this RCT was embedded in a larger cohort study, the power in this study was unavoidably lower than it should be. Participants had a relatively low BMI from an international perspective, which may limit generalization of the findings. WIDER IMPLICATIONS OF THE FINDINGS: In women with a predicted hyper response scheduled for IVF/ICSI, a reduced FSH dose does not affect live birth rates. A lower FSH dose did reduce the incidence of mild and moderate OHSS, but had no impact on severe OHSS. Future research into ORT-based dosing in women with a predicted hyper response should compare various safety management strategies and should be powered on a clinically relevant safety outcome while assessing non-inferiority towards live birth rates. STUDY FUNDING/COMPETING INTEREST(S): This trial was funded by The Netherlands Organization for Health Research and Development (ZonMW, Project Number 171102020). SCO, TCvT and HLT received an unrestricted research grant from Merck Serono (the Netherlands). CBL receives grants from Merck, Ferring and Guerbet. BWJM is supported by a NHMRC Practitioner Fellowship (GNT1082548) and reports consultancy for OvsEva, Merck and Guerbet. FJMB receives monetary compensation as a member of the external advisory board for Ferring pharmaceutics BV and Merck Serono for consultancy work for Gedeon Richter (Belgium) and Roche Diagnostics (Switzerland) and for a research cooperation with Ansh Labs (USA). All other authors have nothing to declare. TRIAL REGISTRATION NUMBER: Registered at the ICMJE-recognized Dutch Trial Registry (www.trialregister.nl). Registration number: NTR2657. TRIAL REGISTRATION DATE: 20 December 2010. DATE OF FIRST PATIENT’S ENROLMENT: 12 May 2011

    Individualized versus standard FSH dosing in women starting IVF/ICSI:An RCT. Part 1: The predicted poor responder

    Get PDF
    STUDY QUESTION: Does an increased FSH dose result in higher cumulative live birth rates in women with a predicted poor ovarian response, apparent from a low antral follicle count (AFC), scheduled for IVF or ICSI? SUMMARY ANSWER: In women with a predicted poor ovarian response (AFC <11) undergoing IVF/ICSI, an increased FSH dose (225/450 IU/day) does not improve cumulative live birth rates as compared to a standard dose (150 IU/day). WHAT IS KNOWN ALREADY: In women scheduled for IVF/ICSI, an ovarian reserve test (ORT) can predict ovarian response to stimulation. The FSH starting dose is often adjusted based on the ORT from the belief that it will improve live birth rates. However, the existing RCTs on this topic, most of which show no benefit, are underpowered. STUDY DESIGN, SIZE, DURATION: Between May 2011 and May 2014, we performed an open-label multicentre RCT in women with an AFC <11 (Dutch Trial Register NTR2657). The primary outcome was ongoing pregnancy achieved within 18 months after randomization and resulting in a live birth. We needed 300 women to assess whether an increased dose strategy would increase the cumulative live birth rate from 25 to 40% (two-sided alpha-error 0.05, power 80%). PARTICIPANTS/MATERIALS, SETTING, METHODS: Women with an AFC ≤ 7 were randomized to an FSH dose of 450 IU/day or 150 IU/day, and women with an AFC 8–10 were randomized to 225 IU or 150 IU/day. In the standard group, dose adjustment was allowed in subsequent cycles based on pre-specified criteria. Both effectiveness and cost-effectiveness of the strategies were evaluated from an intention-to-treat perspective. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 511 women were randomized, 234 with an AFC ≤ 7 and 277 with an AFC 8–10. The cumulative live birth rate for increased versus standard dosing was 42.4% (106/250) versus 44.8% (117/261), respectively [relative risk (RR): 0.95 (95%CI, 0.78–1.15), P = 0.58]. As an increased dose strategy was more expensive [delta costs/woman: €1099 (95%CI, 562–1591)], standard FSH dosing was the dominant strategy in our economic analysis. LIMITATIONS, REASONS FOR CAUTION: Despite our training programme, the AFC might have suffered from inter-observer variation. As this open study permitted small dose adjustments between cycles, potential selective cancelling of cycles in women treated with 150 IU could have influenced the cumulative results. However, since first cycle live birth rates point in the same direction we consider it unlikely that the open design masked a potential benefit for the individualized strategy. WIDER IMPLICATIONS OF THE FINDINGS: Since an increased dose in women scheduled for IVF/ICSI with a predicted poor response (AFC <11) does not improve live birth rates and is more expensive, we recommend using a standard dose of 150 IU/day in these women

    Individualized FSH dosing based on ovarian reserve testing in women starting IVF/ICSI:A multicentre trial and cost-effectiveness analysis

    Get PDF
    STUDY QUESTION: Is there a difference in live birth rate and/or cost-effectiveness between antral follicle count (AFC)-based individualized FSH dosing or standard FSH dosing in women starting IVF or ICSI treatment? SUMMARY ANSWER: In women initiating IVF/ICSI, AFC-based individualized FSH dosing does not improve live birth rates or reduce costs as compared to a standard FSH dose. WHAT IS KNOWN ALREADY: In IVF or ICSI, ovarian reserve testing is often used to adjust the FSH dose in order to normalize ovarian response and optimize live birth rates. However, no robust evidence for the (cost-) effectiveness of this practice exists. STUDY DESIGN, SIZE, DURATION: Between May 2011 and May 2014 we performed a multicentre prospective cohort study with two embedded RCTs in women scheduled for IVF/ICSI. Based on the AFC, women entered into one of the two RCTs (RCT1: AFC 15) or the cohort (AFC 11-15). The primary outcome was ongoing pregnancy achieved within 18 months after randomization resulting in a live birth (delivery of at least one live foetus after 24 weeks of gestation). Data from the cohort with weight 0.5 were combined with both RCTs in order to conduct a strategy analysis. Potential half-integer numbers were rounded up. Differences in costs and effects between the two treatment strategies were compared by bootstrapping. PARTICIPANTS/MATERIALS, SETTING, METHODS: In both RCTs women were randomized to an individualized (RCT1: 450/225 IU, RCT2: 100 IU) or standard FSH dose (150 IU). Women in the cohort all received the standard dose (150 IU). Anti-Mullerian hormone (AMH) was measured to assess AMH post-hoc as a biomarker to individualize treatment. For RCT1 dose adjustment was allowed in subsequent cycles based on pre-specified criteria in the standard group only. For RCT2 dose adjustment was allowed in subsequent cycles in both groups. Both effectiveness and cost-effectiveness of the strategies were evaluated from an intention-to-treat perspective. MAIN RESULTS AND THE ROLE OF CHANCE: We included 1515 women, of whom 483 (31.9%) entered the cohort, 511 (33.7%) RCT1 and 521 (34.4%) RCT2. Live births occurred in 420/747 (56.3%) women in the individualized strategy and 447/769 (58.2%) women in the standard strategy (risk difference -0.019 (95% CI, -0.06 to 0.02), P = 0.39; a total of 1516 women due to rounding up the half integer numbers). The individualized strategy was more expensive (delta costs/woman = (sic)275 (95% CI, 40 to 499)). Individualized dosing reduced the occurrence of mild and moderate ovarian hyperstimulation syndrome (OHSS) and subsequently the costs for management of these OHSS categories (costs saved/woman were (sic)35). The analysis based on AMH as a tool for dose individualization suggested comparable results. LIMITATIONS, REASONS FOR CAUTION: Despite a training programme, the AFC might have suffered from inter-observer variation. In addition, although strict cancel criteria were provided, selective cancelling in the individualized dose group (for poor response in particular) cannot be excluded as observers were not blinded for the FSH dose and small dose adjustments were allowed in subsequent cycles. However, as both first cycle live birth rates and cumulative live birth rates show no difference between strategies, the open design probably did not mask a potential benefit for the individualized group. Despite increasing consensus on using GnRH antagonist co-treatment in women predicted for a hyper response in particular, GnRH agonists were used in almost 80% of the women in this study. Hence, in those women, the AFC and bloodsampling for the post-hoc AMH analysis were performed during pituitary suppression. As the correlation between AFC and ovarian response is not compromised during GnRH agonist use, this will probably not have influenced classification of response. WIDER IMPLICATIONS OF THE FINDINGS: Individualized FSH dosing for the IVF/ICSI population as a whole should not be pursued as it does not improve live birth rates and it increases costs. Women scheduled for IVF/ICSI with a regular menstrual cycle are therefore recommended a standard FSH starting dose of 150 IU per day. Still, safety management by individualized dosing in predicted hyper responders is open for further research
    corecore