3 research outputs found

    CΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ–, ΠΎΠΏΡ‚ΠΈΡ‡Π½Ρ– Ρ– Ρ‚Π΅Ρ€ΠΌΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρ– властивості ΠΏΠ»Ρ–Π²ΠΎΠΊ Ρ‚Π° наночастинок ZnO, CZTS, CZTSe для Ρ„ΠΎΡ‚ΠΎ- Ρ– Ρ‚Π΅Ρ€ΠΌΠΎΠΏΠ΅Ρ€Π΅Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Ρ‡Ρ–Π²

    Get PDF
    ДисСртаційна Ρ€ΠΎΠ±ΠΎΡ‚Π° присвячСна ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— основних Ρ„ΠΎΡ‚ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… характСристик, Π° самС ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΈΡ…ΠΎΠ΄Ρƒ (Q), густини струму ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ замикання (Jsc), СфСктивності (Ξ·) ΠΏΠ»Ρ–Π²ΠΊΠΎΠ²ΠΈΡ… Π€Π•ΠŸ Π½Π° основі Π“ΠŸ n-CdS(ZnSe, ZnS)/p-(CZTS, CdTe) Ρ–Π· ΡΡ‚Ρ€ΡƒΠΌΠΎΠ·Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΈΠΌΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°ΠΌΠΈ n-ITO(ZnO); Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½Π½ΡŽ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… особливостСй, структурних, субструктурних, ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ…, Ρ‚Π΅Ρ€ΠΌΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… властивостСй Ρ‚Π° Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ складу ΠΏΠ»Ρ–Π²ΠΎΠΊ ZnO, CZTS, нанСсСних ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡƒΠ»ΡŒΡΡƒΡŽΡ‡ΠΎΠ³ΠΎ спрСй ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π·Ρƒ, для використання Ρƒ Π€Π•ΠŸ Ρ‚Π° наноструктурованого ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ Π½Π° основі НЧ CZTSe, синтСзованих ΠΊΠΎΠ»ΠΎΡ—Π΄Π½ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, для застосування Ρƒ Π’Π•ΠŸ, Ρ‰ΠΎ ΠΌΠΎΠΆΡƒΡ‚ΡŒ ΠΏΡ€Π°Ρ†ΡŽΠ²Π°Ρ‚ΠΈ ΠΏΠ°Ρ€Π°Π»Π΅Π»ΡŒΠ½ΠΎ Π· Π€Π•ΠŸ. ВстановлСні взаємозв’язки ΠΌΡ–ΠΆ Ρ„Ρ–Π·ΠΈΠΊΠΎ- Ρ‚Π° Ρ…Ρ–ΠΌΡ–ΠΊΠΎ-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ ΡƒΠΌΠΎΠ²Π°ΠΌΠΈ нанСсСння ΠΏΠ»Ρ–Π²ΠΎΠΊ Ρ‚Π° синтСзу НЧ, наноструктурованого ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ Π½Π° Ρ—Ρ… основі, Ρ‚Π° структурними, субструктурними, ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ, Ρ‚Π΅Ρ€ΠΌΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌΠΈ властивостями, Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΈΠΌ складом Π±ΡƒΠ΄ΡƒΡ‚ΡŒ використані для подальшого створСння Π€Π•ΠŸ Ρ‚Π° Π’Π•ΠŸ Π· ΠΏΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠΌΠΈ характСристиками.ДиссСртационная Ρ€Π°Π±ΠΎΡ‚Π° посвящСна ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ основных фотоэлСктричСских характСристик, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ Π²Ρ‹Ρ…ΠΎΠ΄Π° (Q), плотности Ρ‚ΠΎΠΊΠ° ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ замыкания (Jsc), эфСктивности (Ξ·) ΠΏΠ»Ρ‘Π½ΠΎΡ‡Π½Ρ‹Ρ… ЀЭП Π½Π° основС Π“ΠŸ n-CdS(ZnSe, ZnS)/p-(CZTS, CdTe) с Ρ‚ΠΎΠΊΠΎΡΠΎΠ±ΠΈΡ€Π°ΡŽΡ‰ΠΈΠΌΠΈ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°ΠΌΠΈ ITO(ZnO); исслСдованию морфологичСских особСнностСй, структурных, субструктурных, оптичСских, тСрмоэлСктричСских свойств ΠΈ элСмСнтного состава ΠΏΠ»Ρ‘Π½ΠΎΠΊ ZnO, CZTS, нанСсённых ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ спрСй-ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π°, для примСнСния Ρƒ Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… ЀЭП ΠΈ наноструктурированного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½Π° основС НЧ CZTSe, синтСзированных ΠΊΠΎΠ»ΠΎΠΈΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, для использования Ρƒ ВЭП, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π΅Π»ΡŒΠ½ΠΎ с ЀЭП. УстановлСнныС взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ„ΠΈΠ·ΠΈΠΊΠΎ- ΠΈ Ρ…ΠΈΠΌΠΈΠΊΠΎ-тСхнологичСскими условиями нанСсСния ΠΏΠ»Ρ‘Π½ΠΎΠΊ, синтСза НЧ, наноструктурированного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π½Π° ΠΈΡ… основС, ΠΈ структурными, субструктурными, оптичСскими, тСрмоэлСктричСскими свойствами, элСмСнтным составом Π±ΡƒΠ΄ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для создания ЀЭП ΠΈ ВЭП с ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ характСристиками.PhD thesis is devoted both to the optimization of basic photoelectric characteristics (quantum yield (Q), density of short circuit current (Jsc), efficiency (Ξ·)) of solar cells based on n-CdS(ZnSe, ZnS)/p-(CZTS, CdTe) heterojunctions with n-ITO(ZnO) frontal contacts, and to the investigation of morphological, structural, substructural, optical, thermoelectric properties and chemical composition of: (I) ZnO, CZTS films deposited by spray pyrolysis for application in solar cells; (II) nanostructured materials based on CZTSe nanocrystals synthesized by colloidal method for application in thermoelectric devices which can work simultaneously with solar cells. In the work, modeling approbation was performed by means of investigating the effect of optical and recombination losses on Q, Jsc, Ξ· of solar cells based on n-CdS(ZnS)/p-CdTe heterojunctions. Afterwards, the investigation of these losses on the photoelectric characteristics of solar cells based on n-CdS(ZnSe, ZnS)/p-CZTS heterojunctions with n-ITO(ZnO) frontal contacts was carried out with the help of the approbated procedure. Taking into account the results of mathematical modeling, the solar cells based on ZnO frontal contact and CZTS absorber layer were considered. For this purpose, the automated setup for the deposition of ZnO and CZTS films by pulsed spray pyrolysis technique was developed. The in-depth investigation of influence of the main growth conditions of layers’ deposition (substrate temperature (Ts), volume of initial precursor (Vs)) on structural (grains size, phase composition, texture quality, lattice parameters), substructural (coherent scattering domain sizes, level of microdeformations and microstresses, density of dislocations at the boundaries and in the volume of subgrains), optical (transmission coefficients, absorbance, band gap) properties and chemical composition of ZnO, CZTS films, as well as the determination of optimal conditions to obtain the specified films were carried out. Since the solar cells operate at the elevated temperatures, it was proposed to use the additional thermal energy by means of its conversion into electrical energy by use of the thermoelectric devices. For this purpose, the nanostructured thermoelectric material based on CZTSe nanocrystals synthesized by the colloidal method was obtained. The influence of kinetic conditions, namely type of phosphonic acid, on morphological (size, shape), structural (phase composition), optical (absorbance, band gap) properties and chemical composition of CZTSe nanocrystals was determined. The influence of chemical composition on the main thermoelectric properties (concentration (p) and mobility ( u ) of majority charge carriers, relative electrical conductivity ( k ), Seebeck coefficient (SZ)) of nanostructured material based on CZTSe nanocrystals was investigated. The established correlations between the film, nanocrystals growth conditions and structural, substructural, optical, thermoelectric properties, chemical composition will be applied for further development of solar cells and thermoelectric devices with the enhanced characteristics

    Impacts of model structure and data aggregation on European wide predictions of nitrogen and green house gas fluxes in response to changes in livestock, land cover, and land management

    No full text
    Various model approaches have been developed for assessing emissions of different forms of reactive nitrogen in various parts of Europe at various geographic resolutions and for various time periods. The modeling approaches include emission factor approaches, empirical models, simple process-based models, and detailed ecosystem models. In this study, we compared three relatively simple process-based models, developed for the national scale (Integrated NITrogen Impact AssessmenT model On a Regional Scale (INITIATOR2)), European scale (MITERRA) and global scale (integrated model to assess the global environment (IMAGE)), with respect to their response to structural and technological changes in the agricultural systems based on the IPCC B2 baseline scenario for the period 2000-2030. Changes are predicted by the IMAGE model and relate to crop yield, crop area, animal numbers, and N fertilizer inputs. The predicted relative changes by IMAGE are used in INITIATOR2 and MITERRA while relating the animal categories and crop categories in IMAGE to those in the latter models. A comparison was made of NH3, N2O and NOx emissions and N leaching to ground water. We compared predictions for the years 2000 and 2030 for: (i) the Netherlands between INITIATOR2 and MITERRA and (ii) Europe (EU-27 countries) between MITERRA and IMAGE. The results of the comparison are presented and evaluated in view of differences in model structure and the effect of aggregating input data at larger spatial scales
    corecore