7 research outputs found

    Perforating artery flow velocity and pulsatility in patients with carotid occlusive disease: a 7 tesla MRI study

    Get PDF
    Patients with carotid occlusive disease express altered hemodynamics in the post-occlusive vasculature and lesions commonly attributed to cerebral small vessel disease (SVD). We addressed the question if cerebral perforating artery flow measures, using a novel 7T MRI technique, are altered and related to SVD lesion burden in patients with carotid occlusive disease. 21 patients were included with a uni- (18) or bilateral (3) carotid occlusion (64±7 years) and 19 controls (65 ±10 years). Mean flow velocity and pulsatility in the perforating arteries in the semi-oval center (CSO) and basal ganglia (BG), measured with a 2D phase contrast 7T MRI sequence, were compared between patients and controls, and between hemispheres in patients with unilateral carotid occlusive disease. In patients, relations were assessed between perforating artery flow measures and SVD burden score and white matter hyperintensity (WMH) volume. CSO perforating artery flow velocity was lower in patients than controls, albeit non-significant (mean difference [95% confidence interval] 0.08 cm/s [0.00–0.16]; p = 0.053), but pulsatility was similar (0.07 [-0.04–0.18]; p = 0.23). BG flow velocity and pulsatility did not differ between patients and controls (velocity = 0.28 cm/s [-0.32–0.88]; p = 0.34; pulsatility = 0.00 [-0.10–0.11]; p = 0.97). Patients with unilateral carotid occlusive disease showed no significant interhemispheric flow differences. Though non-significant, within patients lower CSO (p = 0.06) and BG (p = 0.11) flow velocity related to larger WMH volume. Our findings suggest that carotid occlusive disease may be associated with abnormal cerebral perforating artery flow and that this relates to SVD lesion burden in these patients, although our observations need corroboration in larger study populations.</p

    Cerebral Perfusion and the Occurrence of Nonfocal Transient Neurological Attacks

    Get PDF
    INTRODUCTION: Nonfocal transient neurological attacks (TNAs) are associated with an increased risk of cardiac events, stroke and dementia. Their etiology is still unknown. Global cerebral hypoperfusion has been suggested to play a role in their etiology, but this has not been investigated. We assessed whether lower total brain perfusion is associated with a higher occurrence of TNAs. METHODS: Between 2015 and 2018, patients with heart failure were included in the Heart Brain Connection study. Patients underwent brain magnetic resonance imaging, including quantitative magnetic resonance angiography (QMRA) to measure cerebral blood flow (CBF). We calculated total brain perfusion of each participant by dividing total CBF by brain volume. Patients were interviewed with a standardized questionnaire on the occurrence of TNAs by physicians who were blinded to QMRA flow status. We assessed the relation between total brain perfusion and the occurrence of TNAs with Poisson regression analysis. RESULTS: Of 136 patients (mean age 70 years, 68% men), 29 (21%) experienced ≥1 TNAs. Nonrotatory dizziness was the most common subtype of TNA. Patients with TNAs were more often female and more often had angina pectoris than patients without TNAs, but total CBF and total brain perfusion were not different between both groups. Total brain perfusion was not associated with the occurrence of TNAs (adjusted risk ratio 1.12, 95% CI 0.88-1.42). CONCLUSION: We found no association between total brain perfusion and the occurrence of TNAs in patients with heart failure
    corecore