229 research outputs found

    Early encounters of a nascent membrane protein: specificity and timing of contacts inside and outside the ribosome

    Get PDF
    An unbiased photo–cross-linking approach was used to probe the “molecular path” of a growing nascent Escherichia coli inner membrane protein (IMP) from the peptidyl transferase center to the surface of the ribosome. The nascent chain was initially in proximity to the ribosomal proteins L4 and L22 and subsequently contacted L23, which is indicative of progression through the ribosome via the main ribosomal tunnel. The signal recognition particle (SRP) started to interact with the nascent IMP and to target the ribosome–nascent chain complex to the Sec–YidC complex in the inner membrane when maximally half of the transmembrane domain (TM) was exposed from the ribosomal exit. The combined data suggest a flexible tunnel that may accommodate partially folded nascent proteins and parts of the SRP and SecY. Intraribosomal contacts of the nascent chain were not influenced by the presence of a functional TM in the ribosome

    Advantages of the nested case-control design in diagnostic research

    Get PDF
    Abstract Background Despite its benefits, it is uncommon to apply the nested case-control design in diagnostic research. We aim to show advantages of this design for diagnostic accuracy studies. Methods We used data from a full cross-sectional diagnostic study comprising a cohort of 1295 consecutive patients who were selected on their suspicion of having deep vein thrombosis (DVT). We draw nested case-control samples from the full study population with case:control ratios of 1:1, 1:2, 1:3 and 1:4 (per ratio 100 samples were taken). We calculated diagnostic accuracy estimates for two tests that are used to detect DVT in clinical practice. Results Estimates of diagnostic accuracy in the nested case-control samples were very similar to those in the full study population. For example, for each case:control ratio, the positive predictive value of the D-dimer test was 0.30 in the full study population and 0.30 in the nested case-control samples (median of the 100 samples). As expected, variability of the estimates decreased with increasing sample size. Conclusion Our findings support the view that the nested case-control study is a valid and efficient design for diagnostic studies and should also be (re)appraised in current guidelines on diagnostic accuracy research.</p

    Excluding venous thromboembolism using point of care D-dimer tests in outpatients: a diagnostic meta-analysis

    Get PDF
    Objective To review the evidence on the diagnostic accuracy of the currently available point of care D-dimer tests for excluding venous thromboembolism

    Transient Cognitive Impairment and White Matter Hyperintensities in Severely Depressed Older Patients Treated With Electroconvulsive Therapy

    Get PDF
    BACKGROUND: Although electroconvulsive therapy (ECT) is a safe and effective treatment for patients with severe late life depression (LLD), transient cognitive impairment can be a reason to discontinue the treatment. The aim of the current study was to evaluate the association between structural brain characteristics and general cognitive function during and after ECT. METHODS: A total of 80 patients with LLD from the prospective naturalistic follow-up Mood Disorders in Elderly treated with Electroconvulsive Therapy study were examined. Magnetic resonance imaging scans were acquired before ECT. Overall brain morphology (white and grey matter) was evaluated using visual rating scales. Cognitive functioning before, during, and after ECT was measured using the Mini Mental State Examination (MMSE). A linear mixed-model analysis was performed to analyze the association between structural brain alterations and cognitive functioning over time. RESULTS: Patients with moderate to severe white matter hyperintensities (WMH) showed significantly lower MMSE scores than patients without severe WMH (F(1,75.54) = 5.42, p = 0.02) before, during, and post-ECT, however their trajectory of cognitive functioning was similar as no time × WMH interaction effect was observed (F(4,65.85) = 1.9, p = 0.25). Transient cognitive impairment was not associated with medial temporal or global cortical atrophy (MTA, GCA). CONCLUSION: All patients showed a significant drop in cognitive functioning during ECT, which however recovered above baseline levels post-ECT and remained stable until at least 6 months post-ECT, independently of severity of WMH, GCA, or MTA. Therefore, clinicians should not be reluctant to start or continue ECT in patients with severe structural brain alterations

    Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.

    Get PDF
    Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI

    PCV50 COST-EFFECTIVENESS OF RULING OUT DEEPVENOUS THROMBOSIS IN PRIMARY CARE VERSUS CARE AS USUAL

    Get PDF

    An in vitro spinal cord injury model to screen neuroregenerative materials

    No full text
    Implantable 'structural bridges' based on nanofabricated polymer scaffolds have great promise to aid spinal cord regeneration. Their development (optimal formulations, surface functionalizations, safety, topographical influences and degradation profiles) is heavily reliant on live animal injury models. These have several disadvantages including invasive surgical procedures, ethical issues, high animal usage, technical complexity and expense. In vitro 3-D organotypic slice arrays could offer a solution to overcome these challenges, but their utility for nanomaterials testing is undetermined. We have developed an in vitro model of spinal cord injury that replicates stereotypical cellular responses to neurological injury in vivo, viz. reactive gliosis, microglial infiltration and limited nerve fibre outgrowth. We describe a facile method to safely incorporate aligned, poly-lactic acid nanofibre meshes (±poly-lysine + laminin coating) within injury sites using a lightweight construct. Patterns of nanotopography induced outgrowth/alignment of astrocytes and neurons in the in vitro model were strikingly similar to that induced by comparable materials in related studies in vivo. This highlights the value of our model in providing biologically-relevant readouts of the regeneration-promoting capacity of synthetic bridges within the complex environment of spinal cord lesions. Our approach can serve as a prototype to develop versatile bio-screening systems to identify materials/combinatorial strategies for regenerative medicine, whilst reducing live animal experimentation.EPSRC Doctoral Training Centre in regenerative medicine (EP/F500491/1

    Sustained Delivery of Activated Rho GTPases and BDNF Promotes Axon Growth in CSPG-Rich Regions Following Spinal Cord Injury

    Get PDF
    Background: Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion. Methodology/Principal Findings: We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site. Conclusion: Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPGmediate
    • …
    corecore