27 research outputs found
Natural Resistance to Inhibitors of the Ubiquinol Cytochrome c Oxidoreductase of Rubrivivax gelatinosus: Sequence and Functional Analysis of the Cytochrome bc(1) Complex
Biochemical analyses of Rubrivivax gelatinosus membranes have revealed that the cytochrome bc(1) complex is highly resistant to classical inhibitors including myxothiazol, stigmatellin, and antimycin. This is the first report of a strain exhibiting resistance to inhibitors of both catalytic Q(0) and Q(i) sites. Because the resistance to cytochrome bc(1) inhibitors is primarily related to the cytochrome b primary structure, the petABC operon encoding the subunits of the cytochrome bc(1) complex of Rubrivivax gelatinosus was sequenced. In addition to homologies to the corresponding proteins from other organisms, the deduced amino acid sequence of the cytochrome b polypeptide shows (i) an E303V substitution in the highly conserved PEWY loop involved in quinol/stigmatellin binding, (ii) other substitutions that could be involved in resistance to cytochrome bc(1) inhibitors, and (iii) 14 residues instead of 13 between the histidines in helix IV that likely serve as the second axial ligand to the b(H) and b(L) hemes, respectively. These characteristics imply different functional properties of the cytochrome bc(1) complex of this bacterium. The consequences of these structural features for the resistance to inhibitors and for the properties of R. gelatinosus cytochrome bc(1) are discussed with reference to the structure and function of the cytochrome bc(1) complexes from other organisms
L'homéostasie du cuivre chez la protéobactérie Rubrivivax gelatinosus
L adaptabilité des cellules aux changements environnementaux repose sur leur capacité à mettre en place des complexes enzymatiques qui régulent leurs différentes voies métaboliques. Ces complexes protéiques nécessitent des cofacteurs (hème et métaux) comme le cuivre. En effet, le cuivre est un oligoélément essentiel pour la survie des organismes vivants, il est notamment présent dans des complexes tels que la cytochrome c oxydase de la chaine respiratoire aérobie. Cependant, l excès de Cu est aussi néfaste pour la cellule. Il génère du stress oxydatif responsable de divers dommages cellulaires. Il est donc nécessaire aux cellules de contrôler la prise en charge du cuivre afin d assurer la régulation de sa concentration intracellulaire. Dans ce travail, nous avons étudié le système de tolérance au cuivre chez Rubrivivax gelatinosus. J ai identifié plusieurs gènes impliqués dans ce système, un de ces gènes code pour un transporteur de cuivre CopA (homologue aux ATP7A/ATP7B de l homme). Les autres gènes codent pour : un régulateur de ce système sensible aux variations du cuivre CopR et deux protéines solubles (CopI et CopJ) fortement induites dans des conditions d excès de cuivre. J ai également montré que malgré l homologie de séquence entre les pompes à cuivre CopA et CtpA (identifiées auparavant au laboratoire) ; elles remplissent deux rôles physiologiques différents dans la cellule. CopA est vitale pour la tolérance au Cu alors que CtpA a un rôle dans l insertion du Cu au sein des cuproprotéines. Par ailleurs, j ai montré qu en absence de CopA, la toxicité du cuivre est plus importante dans les conditions de croissance en microaérobie ou en photosynthèse anaérobe. En effet, l excès du Cu affecte la voie de biosynthèse des porphyrines (hèmes et bactériochlorophylles) reflété par l accumulation d un intermédiaire de cette voie, la coproporphyrine III. Cette accumulation résulte de l effet de l excès du cuivre sur la coproporphyrine III oxydase (HemN) probablement en déstabilisant son cluster [4Fe-4S]. Ces résultats sont soutenus par le fait que l effet toxique du cuivre sur les tétrapyrolles n est pas observé à forte aération en raison de la substitution de HemN par une enzyme à centre bimétalliques HemF. Cette dernière tolère et utilise l oxygène, notre étude suggère qu elle tolère aussi le cuivre. Les résultats obtenus sur les cibles du cuivre en anaérobie au cours de cette étude ainsi que celle publiés par Macomber (Macomber and Imlay 2009), suggèrent que les métaux ont pu éventuellement jouer un rôle dans l émergence des enzymes à clusters bimétalliques lors du passage à une atmosphère oxygénique permettant une adaptation à l augmentation de la toxicité de certains métaux. L ensemble des résultats obtenus à partir de l analyse des différents mutants au cours de cette étude sur la tolérance au cuivre chez R. gelatinosus me permet de proposer un modèle d efflux du cuivre différent de celui d E. coli. Je propose d attribuer un rôle crucial aux protéines solubles CopI et CopJ qui fixeraient probablement le cuivre grâce aux nombreux résidus histidines et méthionines. Leurs rôles seraient soit de séquestrer le cuivre au niveau du périplasme, soit de l oxyder ou encore de l excréter vers un système d efflux de la membrane externe afin de le chasser de la cellule.The ability of Rubrivivax to adapt to its environment (aerobic versus anaerobic) relay on its ability to assemble different complexes involved respiration or photosynthesis pathways. These complexes require cofactors such as heme or chlorophylls, and metals such as magnesium, iron and copper. In particular, copper (Cu) is an essential trace element required for the assembly and the activity of the cytochrome c oxidase in the aerobic respiratory chain. Excess Cu however, is toxic and can originate in various cellular damages. In the absence of a tight control of copper entrance in the cells, bacteria have evolved different efflux systems to control copper concentration within the cytoplasm and the membrane. Very few data are available on the copper homeostasis systems in photosynthetic bacteria. We therefore studied the copper homeostasis system in Rubrivivax gelatinosus to understand how these microorganisms can deal with excess copper. In this work, I have identified several genes involved in copper tolerance. Central to this system, the P1B-type Cu -ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The outlet of copper in the periplasm varies depending on the species. Cu can be sequestrated, oxidized or released outside the cells. Here I describe the identification CopI, a periplasmic protein present in many proteobacteria including Pseudomonas and Cupriavidus and show its requirement for copper tolerance in Rubrivivax under both aerobic and anaerobic conditions. Expression of both CopA and CopI is induced under excess copper and is regulated by CopR, a MerR regulator sensitive to changes in copper concentration. Rubrivivax genome encodes two P1B-type Cu -ATPases, CopA and CtpA. My work confirmed that despite the sequence homology between these copper ATPases, they fulifill two different physiological roles in the cell. CopA is vital for tolerance to Cu while CtpA has a role in the insertion of Cu within cuproproteines. Furthermore, I showed that excess copper in the copA null mutant resulted in a substantial decrease of the cytochrome c oxidase and the photosystem under microaerobic and anaerobic conditions together with the extrusion of coproporphyrin III. Analyses of the mutant indicated that copper targeted the tetrapyrrole biosynthesis pathway at the level of the coproporphyrinogen III oxidase HemN and thereby affects the heme and chlorophyll containing complexes, the oxidase and the photosystem. These results, as well as published work by Macomber (Macomber and Imlay 2009) suggest that Cu target the 4Fe-4S clusters and that this metal may have played a role in the emergence of bimetallic enzymes to replace 4Fe-4S clusters during the appearance of oxygen in the atmosphere.Analyses of CopI expression and the copI null mutant, demonstrate that CopI is required for copper tolerance, and in the absence of an E. coli Cus-like copper efflux system in R. gelatinosus, my results strongly suggest that CopI is the major copper handling protein within the membrane. Altogether, my results allowed me to draw a comprehensive picture of the copper tolerance system within the purple photosynthetic bacterium Rubrivivax gelatinosus and probably other proteobacteria that possess a homologue of copI gene.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
Oxydases terminales chez la bactérie pourpre Rubrivivax gelatinosus (rôle et mise en place dans la membrane)
La bactérie pourpre Rubrivivax gelatinosus se développe en utilisant la photosynthèse et la respiration. Dans le cadre des études menées sur la régulation des gènes photosynthétiques par l oxygène, nous nous sommes intéressés à l étude des oxydases terminales, enzymes catalysant la réduction de l oxygène en eau dans la respiration. Dans ce travail, nous avons étudié le rôle physiologique de ces complexes et la mise en place de leurs cofacteurs. Nous avons identifié deux oxydases terminales, cbb3 et bd, fonctionnelles dans la souche sauvage. Un suppresseur exprimant l oxydase caa3 a été également sélectionné. Notre travail a permis de montrer que ces oxydases terminales jouent un rôle important dans l initiation de la photosynthèse. Ainsi, l activité de ces complexes a pour conséquence la réduction de l oxygène nécessaire à l expression des gènes photosynthétiques. Nous avons également analysé les caractéristiques spectroscopiques de l oxydase cbb3 par RPE et par spectroscopie UV/visible. L hème c de la sous-unité CcoO de cette oxydase présente deux position du 6ème ligand axial, Met143 et His130. Ce changement de ligand s accompagne d un changement de potentiel redox, probablement important pour l activité de l enzyme. L identification des oxydases de type hème-cuivre, cbb3 dans la souche sauvage et caa3 dans un suppresseur, a permis d initier une étude sur leur biogenèse et particulièrement la mise en place du cuivre. Cette étude a permis d identifier un transporteur putatif CtpA et des chaperonnes qui permettraient la mise en place de ce métal dans ces oxydases mais aussi dans la N2O réductase, enzyme de la chaîne de dénitrification.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
Regulation of Photosynthesis Genes in Rubrivivax gelatinosus: Transcription Factor PpsR Is Involved in both Negative and Positive Control
Induction of biosynthesis of the photosystem in anoxygenic photosynthetic bacteria occurs when the oxygen concentration drops. Control of this induction takes place primarily at the transcriptional level, with photosynthesis genes expressed preferentially under anaerobic conditions. Here, we report analysis of the transcriptional control of two photosynthesis promoters, pucBA and crtI, by the PpsR factor in Rubrivivax gelatinosus. This was accomplished by analyzing the photosystem production in the wild type and in the PPSRK (ppsR::Km) mutant grown under anaerobic and semiaerobic conditions and by assessing the β-galactosidase activity of lacZ transcriptionally fused to promoters possessing the putative PpsR-binding consensus sequences. It was found that under semiaerobic conditions, inactivation of the ppsR gene resulted in overproduction of carotenoid and bacteriochlorophyll pigments, while the production of LH2 was drastically reduced. The β-galactosidase activity showed that, in contrast to what has been found previously for Rhodobacter species, PpsR acts in R. gelatinosus as an aerobic repressor of the crtI gene while it acts as an activator for the expression of pucBA. Inspection of the putative PpsR-binding consensus sequences revealed significant differences that may explain the different levels of expression of the two genes studied
The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively)
EmbRS a new two-component system that inhibits biofilm formation and saves Rubrivivax gelatinosus from sinking
Photosynthetic bacteria can switch from planktonic lifestyle to phototrophic biofilm in mats in response to environmental changes. The mechanisms of phototrophic biofilm formation are, however, not characterized. Herein, we report a two-component system EmbRS that controls the biofilm formation in a photosynthetic member of the Burkholderiales order, the purple bacterium Rubrivivax gelatinosus. EmbRS inactivation results in cells that form conspicuous bacterial veils and fast-sinking aggregates in liquid. Biofilm analyses indicated that EmbRS represses the production of an extracellular matrix and biofilm formation. Mapping of transposon mutants that partially or completely restore the wild-type (WT) phenotype allowed the identification of two gene clusters involved in polysaccharide synthesis, one fully conserved only in Thauera sp., a floc-forming wastewater bacterium. A second two-component system BmfRS and a putative diguanylate cyclase BdcA were also identified in this screen suggesting their involvement in biofilm formation in this bacterium. The role of polysaccharides in sinking of microorganisms and organic matter, as well as the importance and the evolution of such regulatory system in phototrophic microorganisms are discussed
Discriminating Susceptibility of Xanthine Oxidoreductase Family to Metals
ABSTRACT The xanthine oxidoreductase (XOR) family are metal-containing enzymes that use the molybdenum cofactor (Moco), 2Fe-2S clusters, and flavin adenine dinucleotide (FAD) for their catalytic activity. This large molybdoenzyme family includes xanthine, aldehyde, and CO dehydrogenases. XORs are widely distributed from bacteria to humans due to their key roles in the catabolism of purines, aldehydes, drugs, and xenobiotics, as well as interconversions between CO and CO2. Assessing the effect of excess metals on the Rubrivivax gelatinosus bacterium, we found that exposure to copper (Cu) or cadmium (Cd) caused a dramatic decrease in the activity of a high-molecular-weight soluble complex exhibiting nitroblue tetrazolium reductase activity. Mass spectrometry and genetic analyses showed that the complex corresponds to a putative CO dehydrogenase (pCOD). Using mutants that accumulate either Cu+ or Cd2+ in the cytoplasm, we show that Cu+ or Cd2+ is a potent inhibitor of XORs (pCOD and the xanthine dehydrogenase [XDH]) in vivo. This is the first in vivo demonstration that Cu+ affects Moco-containing enzymes. The specific inhibitory effect of these compounds on the XOR activity is further supported in vitro by direct addition of competing metals to protein extracts. Moreover, emphasis is given on the inhibitory effect of Cu on bovine XOR, showing that the XOR family could be a common target of Cu. Given the conservation of XOR structure and function across the tree of life, we anticipate that our findings could be transferable to other XORs and organisms. IMPORTANCE The high toxicity of Cu, Cd, Pb, As, and other metals arises from their ability to cross membranes and target metalloenzymes in the cytoplasm. Identifying these targets provides insights into the toxicity mechanisms. The vulnerability of metalloenzymes arises from the accessibility of their cofactors to ions. Accordingly, many enzymes whose cofactors are solvent exposed are likely to be targets of competing metals. Here, we describe for the first time, with in vivo and in vitro experiments, a direct effect of excess Cu on the xanthine oxidoreductase family (XOR/XDH/pCOD). We show that toxic metal affects these Moco enzymes, and we suggest that access to the Moco center by Cu ions could explain the Cu inhibition of XORs in living organisms. Human XOR activity is associated with hyperuricemia, xanthinuria, gout arthritis, and other diseases. Our findings in vivo highlight XOR as a Cu target and thus support the potential use of Cu in metal-based therapeutics against these diseases
Cadmium and Copper Cross-Tolerance. Cu Alleviates Cd Toxicity, and Both Cations Target Heme and Chlorophyll Biosynthesis Pathway in
International audienceCadmium, although not redox active is highly toxic. Yet, the underlying mechanisms driving toxicity are still to be characterized. In this study, we took advantage of the purple bacterium Rubrivivax gelatinosus strain with defective Cd2+-efflux system to identify targets of this metal. Exposure of the 1cadA strain to Cd2+ causes a decrease in the photosystem amount and in the activity of respiratory complexes. As in case of Cu+ toxicity, the data indicated that Cd2+ targets the porphyrin biosynthesis pathway at the level of HemN, a S-adenosylmethionine and CxxxCxxC coordinated [4Fe-4S] containing enzyme. Cd2+ exposure therefore results in a deficiency in heme and chlorophyll dependent proteins and metabolic pathways. Given the importance of porphyrin biosynthesis, HemN represents a key metal target to account for toxicity. In the environment, microorganisms are exposed to mixture of metals. Nevertheless, the biological effects of such mixtures, and the toxicity mechanisms remain poorly addressed. To highlight a potential cross-talk between Cd2+ and Cu+ -efflux systems, we show (i) that Cd2+ induces the expression of the Cd2+-efflux pump CadA and the Cu+ detoxification system CopA and CopI; and (ii) that Cu+ ions improve tolerance towards Cd2+, demonstrating thus that metal mixtures could also represent a selective advantage in the environment